Browse Maps By Country

Select the first letter of country.
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Showing 2 countries

Fiji

Taveuni; Fiji (2016)
Relative probability of new vent locations
Figure 3 in: Cronin, S.J. (2016). Is There Volcanic Hazard In Fiji? Volcanic Geology Investigations On Taveuni. In: Taylor, P.W. (Ed.) Volcanic Hazards and Emergency Management in the Southwest Pacific, SPC Technical Bulletin, SPC00017, p. 170-178

Taveuni; Fiji (2006)
Volcanic hazard map of Taveuni, Fiji
Cronin, S. J., Németh, K., & Stewart, R.B. (2006). Volcanic hazards planning on rifting island and fissure volcanoes. Joint Conference of the Geological Society of New Zealand and the New Zealand Geophysical Society.

Taveuni; Fiji (2001)
Volcanic hazard map for Taveuni Volcano (B&W)
Figure 8 in: Cronin, S. J., & Neall, V. E. (2001). Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji. New Zealand Journal of Geology and Geophysics, 44(3), 417-437. https://doi.org/10.1080/00288306.2001.9514948

Taveuni; Fiji (2001)
Volcanic hazard map for Taveuni Volcano (color)
Figure 8 in: Cronin, S. J., & Neall, V. E. (2001). Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji. New Zealand Journal of Geology and Geophysics, 44(3), 417-437. https://doi.org/10.1080/00288306.2001.9514948

France

Chaîne des Puys; France (2024)
Identification of risk zones (green, yellow, orange, and red) based on the simulation of a one-hour limnic eruption (Scenario 2)
Figure 10 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Chaîne des Puys; France (2024)
Identification of risk zones (green, yellow, orange, and red) based on the simulation of a one-hour limnic eruption (Scenario 2)
Figure 11 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Chaîne des Puys; France (2024)
Probabilistic CO2 concentrations maps in the case of a limnic eruption (Scenario 2) modelled for different types of fluxes (constant and exponential) and eruption durations (first column for a two-hour eruption, second column for a one-hour eruption with one hour of dispersion).
Figure 7 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Chaîne des Puys; France (2024)
Probabilistic CO2 concentrations maps the case of a limnic eruption (Scenario 2) occurring in (a) autumn, (b) winter, (c) spring, and (d) summer, based on a meteorological variability of 80 days over 5 years (2016–2020) for each season
Figure 6 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Chaîne des Puys; France (2024)
Simulation of gas dispersion during the summer season - exponential flux - 1.50 m
Figure 8 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Chaîne des Puys; France (2024)
Simulation of gas dispersion during the summer season - exponential flux - 1.50 m
Figure 9 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Chaîne des Puys; France (2016)
Block diagram appraisal of the two event scenario
Figure 9 in: Latutrie, B., Andredakis, I., De Groeve, T., Harris, A. J. L., Langlois, E., de Vries, B. V. W., Saubin, E., Bilotta, G., Cappello, A., Crisci, G.M., D'ambrosio, D., Del Negro, C., Favalli, M., Fujita, E., Iovine, G., Kelfoun, K., Rongo, R., Spataro, W., Tarquini, S., Coppola, D., Ganci, G., Marchese, F., Pergola, N., & Tramutoli, V. (2016). Testing a geographical information system for damage and evacuation assessment during an effusive volcanic crisis. In: Harris, A.J.L., De Groeve, T., & Carn, S.A. (Eds.) Detecting, Modelling and Responding to Effusive Eruptions. Geological Society, London, Special Publications, 426(1), p. 649-672. https://doi.org/10.1144/SP426.19

Chaîne des Puys; France (2016)
Evacuation appraisal
Figure 8 in: Latutrie, B., Andredakis, I., De Groeve, T., Harris, A. J. L., Langlois, E., de Vries, B. V. W., Saubin, E., Bilotta, G., Cappello, A., Crisci, G.M., D'ambrosio, D., Del Negro, C., Favalli, M., Fujita, E., Iovine, G., Kelfoun, K., Rongo, R., Spataro, W., Tarquini, S., Coppola, D., Ganci, G., Marchese, F., Pergola, N., & Tramutoli, V. (2016). Testing a geographical information system for damage and evacuation assessment during an effusive volcanic crisis. In: Harris, A.J.L., De Groeve, T., & Carn, S.A. (Eds.) Detecting, Modelling and Responding to Effusive Eruptions. Geological Society, London, Special Publications, 426(1), p. 649-672. https://doi.org/10.1144/SP426.19

Chaîne des Puys; France (2016)
Inundation map for the Grave Noire event overlain on the local GIS
Figure 6 in: Latutrie, B., Andredakis, I., De Groeve, T., Harris, A. J. L., Langlois, E., de Vries, B. V. W., Saubin, E., Bilotta, G., Cappello, A., Crisci, G.M., D'ambrosio, D., Del Negro, C., Favalli, M., Fujita, E., Iovine, G., Kelfoun, K., Rongo, R., Spataro, W., Tarquini, S., Coppola, D., Ganci, G., Marchese, F., Pergola, N., & Tramutoli, V. (2016). Testing a geographical information system for damage and evacuation assessment during an effusive volcanic crisis. In: Harris, A.J.L., De Groeve, T., & Carn, S.A. (Eds.) Detecting, Modelling and Responding to Effusive Eruptions. Geological Society, London, Special Publications, 426(1), p. 649-672. https://doi.org/10.1144/SP426.19

Chaîne des Puys; France (2016)
Inundation map for the Petit Puy de Dome (orange) and Grave Noire (purple) events overlain on the GDACS GIS
Figure 7 in: Latutrie, B., Andredakis, I., De Groeve, T., Harris, A. J. L., Langlois, E., de Vries, B. V. W., Saubin, E., Bilotta, G., Cappello, A., Crisci, G.M., D'ambrosio, D., Del Negro, C., Favalli, M., Fujita, E., Iovine, G., Kelfoun, K., Rongo, R., Spataro, W., Tarquini, S., Coppola, D., Ganci, G., Marchese, F., Pergola, N., & Tramutoli, V. (2016). Testing a geographical information system for damage and evacuation assessment during an effusive volcanic crisis. In: Harris, A.J.L., De Groeve, T., & Carn, S.A. (Eds.) Detecting, Modelling and Responding to Effusive Eruptions. Geological Society, London, Special Publications, 426(1), p. 649-672. https://doi.org/10.1144/SP426.19

Chaîne des Puys; France (2016)
Inundation map for the Petit Puy de Dome event overlain on the local GIS
Figure 5 in: Latutrie, B., Andredakis, I., De Groeve, T., Harris, A. J. L., Langlois, E., de Vries, B. V. W., Saubin, E., Bilotta, G., Cappello, A., Crisci, G.M., D'ambrosio, D., Del Negro, C., Favalli, M., Fujita, E., Iovine, G., Kelfoun, K., Rongo, R., Spataro, W., Tarquini, S., Coppola, D., Ganci, G., Marchese, F., Pergola, N., & Tramutoli, V. (2016). Testing a geographical information system for damage and evacuation assessment during an effusive volcanic crisis. In: Harris, A.J.L., De Groeve, T., & Carn, S.A. (Eds.) Detecting, Modelling and Responding to Effusive Eruptions. Geological Society, London, Special Publications, 426(1), p. 649-672. https://doi.org/10.1144/SP426.19

Pavin (Chaîne des Puys); France (2024)
Identification of risk zones (green, yellow, orange, and red) based on the simulation of a one-hour limnic eruption (Scenario 2)
Figure 10 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Pavin (Chaîne des Puys); France (2024)
Identification of risk zones (green, yellow, orange, and red) based on the simulation of a one-hour limnic eruption (Scenario 2)
Figure 11 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Pavin (Chaîne des Puys); France (2024)
Probabilistic CO2 concentrations maps in the case of a limnic eruption (Scenario 2) modelled for different types of fluxes (constant and exponential) and eruption durations (first column for a two-hour eruption, second column for a one-hour eruption with one hour of dispersion).
Figure 7 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Pavin (Chaîne des Puys); France (2024)
Probabilistic CO2 concentrations maps the case of a limnic eruption (Scenario 2) occurring in (a) autumn, (b) winter, (c) spring, and (d) summer, based on a meteorological variability of 80 days over 5 years (2016–2020) for each season
Figure 6 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Pavin (Chaîne des Puys); France (2024)
Simulation of gas dispersion during the summer season - exponential flux - 1.50 m
Figure 8 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024

Pavin (Chaîne des Puys); France (2024)
Simulation of gas dispersion during the summer season - exponential flux - 1.50 m
Figure 9 in: Rafflin, V., Boudoire, G., Massaro, S., Stocchi, M., Costa, A., Grassa, F., Giuffrida, G., Gailler, L., Planche, C., Banson, S., & Harris, A. (2024). Modelling CO2 dispersion in the air during potential limnic eruption at the lake Pavin (France). Journal of Volcanology and Geothermal Research, 108024. https://doi.org/10.1016/j.jvolgeores.2024.108024