Models

For maps using probabilistic or scenario-based modeling methods, there are a variety of empirical and physical models used to assess volcanic hazards. The following models have been used on at least one map in the database. The most common models used on volcanic hazard maps are the energy cone or line empirical model (14% of maps; Heim 1932; Sheridan 1979; Sheridan & Malin 1983); LAHARZ (8% of maps; Iverson et al. 1998; Schilling 1998; Schilling 2014); and Tephra2 (3% of maps; Bonadonna et al. 2005). For a full list of all maps using the listed model, click on the model name.


Ballistics

Ballista

Tsunematsu, K., Chopard, B., Falcone, J. L., & Bonadonna, C. (2014). A numerical model of ballistic transport with collisions in a volcanic setting. Computers & Geosciences, 63, p. 62-69. https://doi.org/10.1016/j.cageo.2013.10.016

Ballistics

Bertin, D. (2017). 3‐D ballistic transport of ellipsoidal volcanic projectiles considering horizontal wind field and variable shape‐dependent drag coefficients. Journal of Geophysical Research: Solid Earth, 122(2), p. 1126-1151. https://doi.org/10.1002/2016JB013320

Eject!

Mastin, L.G. (2001). A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. US Geological Survey, Open-File Report 2001-45, 13 p. https://doi.org/10.3133/ofr0145

Great Balls of Fire ballistic model

Biass, S., Falcone, J. L., Bonadonna, C., Di Traglia, F., Pistolesi, M., Rosi, M., & Lestuzzi, P. (2016). Great Balls of Fire: A probabilistic approach to quantify the hazard related to ballistics—A case study at La Fossa volcano, Vulcano Island, Italy. Journal of Volcanology and Geothermal Research, 325, 1-14. https://doi.org/10.1016/j.jvolgeores.2016.06.006

LPAC

de'Michieli Vitturi, M., Neri, A., Esposti Ongaro, T., Lo Savio, S., & Boschi, E. (2010). Lagrangian modeling of large volcanic particles: Application to Vulcanian explosions. Journal of Geophysical Research: Solid Earth, 115(B8). https://doi.org/10.1029/2009JB007111

Unnamed ballistic model [Alatorre-Ibargüengoitia & Delgado-Granados (2006)]

Alatorre‐Ibargüengoitia, M. A., & Delgado‐Granados, H. (2006). Experimental determination of drag coefficient for volcanic materials: calibration and application of a model to Popocatépetl volcano (Mexico) ballistic projectiles. Geophysical Research Letters, 33(11). https://doi.org/10.1029/2006GL026195

Unnamed ballistic model [Alatorre-Ibargüengoitia et al. (2012)]

Alatorre-Ibargüengoitia, M. A., Delgado-Granados, H., & Dingwell, D. B. (2012). Hazard map for volcanic ballistic impacts at Popocatépetl volcano (Mexico). Bulletin of Volcanology, 74(9), p. 2155-2169. https://doi.org/10.1007/s00445-012-0657-2

Unnamed ballistic model [Instituto Geológico y Minero de España (2006)]

Instituto Geológico y Minero de España. (2006). Cartografía de Peligrosidad Volcánica de la Isla de Tenerife. https://www.tenerife.es/planes/PTEOPrevRiesgos/adjuntos/PINF_Anexo0M.pdf

Unnamed ballistic model [Nurmawati & Konstantinou (2018)]

Nurmawati, A., & Konstantinou, K. I. (2018). Hazard assessment of volcanic ballistic impacts at Mt Chihshin, Tatun Volcano Group, northern Taiwan. Natural hazards, 92(1), p. 77-92. https://doi.org/10.1007/s11069-018-3192-4


DA

Limit Equilibrium Analysis

Reid, M. E., Christian, S. B., and Brien, D. L. (2000). Gravitational Stability of Three-Dimensional Stratovolcano Edifices. J. Geophys. Res. 105 (B3), 6043–6056. https://doi.org/10.1029/1999JB900310 https://doi.org/10.1029/1999JB900310


Earthquakes

Peak Ground Acceleration model

Zobin, V. M. (2001). Seismic hazard of volcanic activity. Journal of volcanology and geothermal research, 112(1-4), 1-14. https://doi.org/10.1016/S0377-0273(01)00230-X


Flood

DAMBRK

Fread, D. L. (1984). DAMBRK: The NWS dam-break flood forecasting model (Vol. 4). Silver Spring: Hydrologic Research Laboratory, National Weather Service, NOAA. http://rivermechanics.net/models/smpdbk.pdf

Wetmore, J. N., & Fread, D. L. (1991). The NWS simplified dam-break flood forecasting model. National Weather Service, Silver Spring, Maryland, 164-197. http://rivermechanics.net/models/smpdbk.pdf

HEC-RAS

Hydrologic Engineering Center (HEC). (2014). HEC-RAS River Analysis System, User's Manual, CPD-68. U.S. Army Corps of Engineers, Hydrologic Engineering Center, Davis, CA. https://www.hec.usace.army.mil/software/hec-ras/

Unknown flood or hydrologic model

Reference not available


Gas

AERMOD

American Meteorological Society/Environmental Protection Agency Regulatory Model Improvement Committee (AERMIC). (2006). AERMOD. https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#aermod https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#aermod

CALPUFF

Scire, J. S., Strimaitis, D. G., & Yamartino, R. J. (2000). A user’s guide for the CALPUFF dispersion model. Earth Tech, Inc, 521 p. http://www.lem.org.cn/u/cms/www/201307/05161203d9ap.pdf

Unknown gas dispersion model

Reference not available


Lahars

FLO-2D

O'Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 119(2), 244-261. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:2(244)

HIMAT-FAO

HIMAT-FAO. (1987). Modelo de simulación matemática sobre comportamiento hidráulico de los flujos de lodos (Documento No. 6). 61 p. Bogotá.

HYDRAUX

Hansen, R. P. (1987). Simulation of Debris Flows Using the HYDRAUX Model. Proceedings of the Advanced Seminar on One-Dimensional, Open-Channel Flow and Transport Modeling, US Geological Survey, Water Resources Investigations Report, 89-4061, p. 74-76. https://doi.org/10.3133/wri894061

DeLong, L. L., & Schoellhamer, D. H. (1989). Computer program HYDRAUX: a model for simulating one-dimensional, unsteady, open-channel flow (No. 88-4226). Department of the Interior, US Geological Survey. https://doi.org/10.3133/wri894061

LaharFlow

Woodhouse (in preparation)

LAHARZ or modified version (such as PFZ)

Iverson, R. M., Schilling, S. P., & Vallance, J. W. (1998). Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110(8), p. 972-984. https://doi.org/10.1130/0016-7606(1998)110%3C0972:ODOLIH%3E2.3.CO;2

Schilling, S.P. (1998). LAHARZ; GIS programs for automated mapping of lahar-inundation hazard zones. US Geological Survey, Open-File Report 98-638, 80 p. https://doi.org/10.1130/0016-7606(1998)110%3C0972:ODOLIH%3E2.3.CO;2

Schilling, S.P. (2014). Laharz_py: GIS tools for automated mapping of lahar inundation hazard zones. US Geological Survey, Open-File Report 2014-1073, 78 p. https://doi.org/10.3133/ofr20141073

MultiHaz lahar model

Tierz, P., Woodhouse, M.J., Phillips, J.C., Sandri, L., Selva, J., Marzocchi, W., & Odbert, H.M. (2017). A framework for probabilistic multi-hazard assessment of rain-triggered lahars using Bayesian belief networks. Frontiers in Earth Science, 5(73), 23 p. https://doi.org/10.3389/feart.2017.00073

Unknown lahar flow model

Unknown reference

Unnamed snow-melt lahar model [Kuniaki & Ido (2003)]

Kuniaki and Shunsuke Ido. (2003). Sediment runoff analysis method using arbitrary triangular planar elements. Sabo Academic Journal. 55 (6), p.33-39.

Unnamed snow-melt lahar model [Miyamoto & Ito (2003)]

Miyamoto, K. and Ido, S. (2003). Sediment runoff analysis method using arbitrary triangular plane elements. Journal of the Sabo Society, 55(6), p.33-39.

Unnamed lahar travel time model [Pierson (1998)]

Pierson, T. C. (1998). An empirical method for estimating travel times for wet volcanic mass flows. Bulletin of Volcanology, 60(2), 98-109. https://doi.org/10.1007/s004450050219 https://doi.org/10.1007/s004450050219


Lava flows

DOWNFLOW

Favalli, M., Pareschi, M. T., Neri, A., & Isola, I. (2005). Forecasting lava flow paths by a stochastic approach. Geophysical Research Letters, 32(3). https://doi.org/10.1029/2004GL021718

Etna Lava Flow Model

Damiani, M. L., Groppelli, G., Norini, G., Bertino, E., Gigliuto, A., & Nucita, A. (2006). A lava flow simulation model for the development of volcanic hazard maps for Mount Etna (Italy). Computers & geosciences, 32(4), 512-526. https://doi.org/10.1016/j.cageo.2005.08.011

FLOWGO

Harris, A. J., & Rowland, S. (2001). FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bulletin of Volcanology, 63(1), 20-44. https://rdcu.be/cJ3EW

LavaC

Richardson, J. & Connor, L.J. (2014). Lava C Version 01. https://vhub.org/resources/3597/

LavaPL

Connor, L.J., Connor, C.B., Meliksetian, K. & Savov, I. (2012). Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. Journal of Applied Volcanology, 1 (3). https://doi.org/10.1186/2191-5040-1-3

LavaSIM

Fujita, E., & Nagai, M. (2016). LavaSIM: its physical basis and applicability. Geological Society, London, Special Publications, 426(1), 375-386. https://doi.org/10.1144/SP426.14

LAZSLO

Bonne, K., Kervyn, M., Cascone, L., Njome, S., Van Ranst, E., Suh, E., Ayonghe, S., Jacobs, P., & Ernst, G. (2008). A new approach to assess long‐term lava flow hazard and risk using GIS and low‐cost remote sensing: the case of Mount Cameroon, West Africa. International Journal of Remote Sensing, 29(22), 6539-6564. https://doi.org/10.1080/01431160802167873

Lines of Steepest Descent

Kauahikaua, J., Margriter, S., Lockwood, J., & Trusdell, F. (1995). Applications of GIS to the estimation of lava flow hazards on Mauna Loa Volcano, Hawai'i. Washington DC American Geophysical Union Geophysical Monograph Series, 92, 315-325. https://doi.org/10.1029/GM092p0315

Paleo, U.F., & Trusdell, F.A. (2002). Volcanic risk assessment and spatial planning policies in the Island of Hawai’i; modeling lava flows from Mauna Loa Volcano. In: Briggs, D.J., Forer, P., Jarup, L., and Stern, R. (Eds.). GIS for emergency preparedness and health risk reduction. Dordrecht, The Netherlands, Kluwer Academic Publishers NATO Science Series, 4, p. 115–135. https://doi.org/10.1029/GM092p0315

MAGFLOW

Vicari, A., Alexis, H., Del Negro, C., Coltelli, M., Marsella, M., & Proietti, C. (2007). Modeling of the 2001 lava flow at Etna volcano by a cellular automata approach. Environmental Modelling & Software, 22(10), p. 1465-1471. https://doi.org/10.1016/j.envsoft.2006.10.005

Del Negro, C., Fortuna, L., Herault, A., & Vicari, A. (2008). Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model. Bulletin of Volcanology, 70(7), 805-812. https://doi.org/10.1016/j.envsoft.2006.10.005

MOLASSES

Connor, L.J., Connor, C.B., Meliksetian, K. and Savov, I. (2012). Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. Journal of Applied Volcanology (1), 3. https://doi.org/10.1186/2191-5040-1-3 https://doi.org/10.1186/2191-5040-1-3

Richardson, J. A., Connor, L., Connor, C., & Gallant, E. (2017). Probabilistically modeling lava flows with MOLASSES. AGU Fall Meeting Abstracts, V41B-02. https://doi.org/10.1186/2191-5040-1-3

MrLavaLoba

de'Michieli Vitturi, M., & Tarquini, S. (2018). MrLavaLoba: A new probabilistic model for the simulation of lava flows as a settling process. Journal of Volcanology and Geothermal Research, 349, 323-334. https://doi.org/10.1016/j.jvolgeores.2017.11.016

MULTIFLOW

Richardson, P., & Karlstrom, L. (2019). The multi-scale influence of topography on lava flow morphology. Bulletin of Volcanology, 81(4), 1-17. https://doi.org/10.1007/s00445-019-1278-9

Q-LavHa

Mossoux, S., Saey, M., Bartolini, S., Poppe, S., Canters, F., & Kervyn, M. (2016). Q-LAVHA: A flexible GIS plugin to simulate lava flows. Computers & Geosciences, 97, p. 98-109. https://doi.org/10.1016/j.cageo.2016.09.003

SCIARA-fv2

Rongo, R., Lupiano, V., Spataro, W., D'ambrosio, D., Iovine, G., & Crisci, G. M. (2016). SCIARA: cellular automata lava flow modelling and applications in hazard prediction and mitigation. In: Harris, A.J.L., De Groeve, T., & Carn, S.A. (Eds.) Detecting, Modelling and Responding to Effusive Eruptions. Geological Society, London, Special Publications, 426(1), 345-356. https://doi.org/10.1144/SP426.22

SLAG

Costa, A., & Macedonio, G. (2005). Numerical simulation of lava flows based on depth‐averaged equations. Geophysical Research Letters, 32(5). https://doi.org/10.1029/2004GL021817

Unknown lava flow model

Unknown reference

Unnamed cellular automata lava flow model [Miyamoto & Sasaki (1997)]

Miyamoto, H., & Sasaki, S. (1997). Simulating lava flows by an improved cellular automata method. Computers & Geosciences, 23(3), p. 283-292. https://doi.org/10.1016/S0098-3004(96)00089-1

Unnamed empirical altitude-length lava flow model

Walker, G.P.L. (1973). Mount Etna and the 1971 eruption - Lengths of lava flows: Philosophical Transactions of the Royal Society of London, 274, p. 107-118. https://doi.org/10.1098/rsta.1973.0030

Walker G.P.L. (1974). Volcanic hazards and the prediction of volcanic eruptions. In: Funnell B.M. (ed) Prediction of Geological Hazards. Geological Society of London, Miscellaneous Paper 3, p. 23–41

Unnamed GIS watershed/lavashed model [Kauahikaua et al. (1998)]

Kauahikaua, J. P., Trusdell, F. A., & Heliker, C. C. (1998). The probability of lava inundation at the proposed and existing Kulani Prison Sites. US Geological Survey, Open-File Report 98-794. 21 p. https://doi.org/10.3133/ofr98794 https://doi.org/10.3133/ofr98794

Unnamed lava flow model [Cabildo Tenerife (2012)]

Cabildo Tenerife. (2012). Plan Territorial Especial de Ordemación para la Prevención de Riesgos. Documento Cartográfocp (Planos de Información). https://www.tenerife.es/planes/PTEOPrevRiesgos/adjuntos/Memo_Info06.pdf

Unnamed GIS-based lava flow model [CAPRA]

Comprehensive Approach to Probabilistic Risk Assessment (CAPRA) Initiative. Tomo I Metodología de Modelación Probabilista de Riesgos Naturales. Informe Técnico ERN-CAPRA-T1-3, Modelos de Evaluación de Amenazas Naturales y Selección. https://ecapra.org/sites/default/files/documents/ERN-CAPRA-R6-T1-3%20-%20Modelos%20de%20Evaluaci%C3%B3n%20de%20Amenazas.pdf

Unnamed lava flow model [Marrero et al. (2019)]

Marrero, J. M., García, A., Berrocoso, M., Llinares, Á., Rodríguez-Losada, A., & Ortiz, R. (2019). Strategies for the development of volcanic hazard maps in monogenetic volcanic fields: the example of La Palma (Canary Islands). Journal of Applied Volcanology, 8(1), 6. https://doi.org/10.1186/s13617-019-0085-5

Unnamed lava flow model [Miyamoto & Sasaki (1998)]

Miyamoto, H., & Sasaki, S. (1998). Numerical simulations of flood basalt lava flows: Roles of parameters on lava flow morphologies. Journal of Geophysical Research: Solid Earth, 103(B11), 27489-27502. https://doi.org/10.1029/98JB00438

Unnamed lava flow model [Yamashita (1990)]

Reference not available

Unnamed topographic lava flow model

Kereszturi, G., Procter, J., Cronin, S. J., Németh, K., Bebbington, M., & Lindsay, J. (2012). LiDAR-based quantification of lava flow susceptibility in the City of Auckland (New Zealand). Remote Sensing of Environment, 125, 198-213. https://doi.org/10.1016/j.rse.2012.07.015


Mass flows

Energy cone or line

Heim, A. (1932). Bergsturz und Menschenleben. Zurich. 218 p.

Sheridan, M. F. (1979). Emplacement of pyroclastic flows: A review. Geological Society of America Special Paper, 180, 125-136.

Sheridan, M. F., & Malin, M. C. (1983). Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, Lipari, and Vesuvius. Journal of Volcanology and Geothermal Research, 17(1-4), 187-202. https://doi.org/10.1016/0377-0273(83)90067-7

FLOW

McEwen, A.S., & Malin, M.C. (1989). Dynamics of Mount St. Helens' 1980 pyroclastic flows, rockslide-avalanche, lahars, and blast. Journal of Volcanology and Geothermal Research, 37(3-4), 205-231. https://doi.org/10.1016/0377-0273(89)90080-2 https://doi.org/10.1016/0377-0273(89)90080-2

FLOW2D or FLOW3D

Sheridan, M. F. and Macías, J. L. (1992). PC software for 2-dimensional gravity-driven flows: Application to Colima and El Chichón Volcanoes, México. Proceedings of the Second International Meeting on Volcanology, Colima, México.

Kover, T.P. (1995). Application of a digital terrain model for the modeling of volcano flows: a tool for volcanic hazard determination. MA thesis, SUNY at Buffalo, 62 pp.

TITAN2D

Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M., & Bursik, M. (2003). Computing granular avalanches and landslides. Physics of fluids, 15(12), p. 3638-3646. https://doi.org/10.1063/1.1614253

Patra, A.K., Bauer, A.C., Nichita, C.C., Pitman, E.B., Sheridan, M.F., Bursik, M., Rupp, B., Webber, A., Stinton, A.J., Namikawa, L.M. & Renschler, C. S. (2005). Parallel adaptive numerical simulation of dry avalanches over natural terrain. Journal of Volcanology and Geothermal Research, 139(1-2), 1-21. https://doi.org/10.1063/1.1614253

Unknown flow model

Reference not available

Unnamed empirical area-volume relationship

Iverson, R. M., Schilling, S. P., & Vallance, J. W. (1998). Objective delineation of lahar-inundation hazard zones. Geological Society of America Bulletin, 110(8), p. 972-984. https://doi.org/10.1130/0016-7606(1998)110%3C0972:ODOLIH%3E2.3.CO;2

Dade, W.B., & Huppert, H.E. (1998). Long-runout rockfalls. Geology, 26(9), p. 803-806. https://doi.org/10.1130/0016-7606(1998)110%3C0972:ODOLIH%3E2.3.CO;2

Calder, E.S., Cole, P.D., Dade, W.B., Druitt, T.H., Hoblitt, R.P., Huppert, H.E., Ritchie, L., Sparks, R.S.J., & Young, S. R. (1999). Mobility of pyroclastic flows and surges at the Soufriere Hills Volcano, Montserrat. Geophysical Research Letters, 26(5), p. 537-540. https://doi.org/10.1029/1999GL900051

Unnamed modified energy cone model [Toyos et al. (2007)]

Toyos G, Cole P, Felpeto A, Marti J. (2007). A GIS-based methodology for hazard mapping of small volume pyroclastic density currents. Natural Hazards, 41(1), p. 99–112. https://doi.org/10.1007/s11069-006-9026-9

Unnamed mass flow model [Mastrolorenzo & Pappalardo (2010)]

Mastrolorenzo, G., and L. Pappalardo. (2010). Hazard assessment of explosive volcanism at Somma‐Vesuvius, Journal of Geophysical Research, 115, B12212. https://doi.org/10.1029/2009JB006871

Unnamed dry particle flow model [Yamashita & Miyamoto (1991)]

Yamashita S. & Miyamoto K. (1991). Numerical simulation method of debris movements with a volcanic eruption. Japan-U.S. Workshop on Snow Avalanche, Landslide, and Debris Flow Prediction and Control, p. 433-442.

VolcFlow

Kelfoun, K., & Druitt, T. H. (2005). Numerical modeling of the emplacement of Socompa rock avalanche, Chile. Journal of Geophysical Research: Solid Earth, 110(B12). https://doi.org/10.1029/2005JB003758


Multi

BET_VH

Marzocchi, W., Sandri, L., & Selva, J. (2010). BET_VH: a probabilistic tool for long-term volcanic hazard assessment. Bulletin of Volcanology, 72(6), 705-716. https://doi.org/10.1007/s00445-010-0357-8

ERN-Volcano

Comprehensive Approach to Probabilistic Risk Assessment (CAPRA) Initiative. Tomo I Metodología de Modelación Probabilista de Riesgos Naturales. Informe Técnico ERN-CAPRA-T1-3, Modelos de Evaluación de Amenazas Naturales y Selección. https://ecapra.org/sites/default/files/documents/ERN-CAPRA-R6-T1-3%20-%20Modelos%20de%20Evaluaci%C3%B3n%20de%20Amenazas.pdf

Comprehensive Approach to Probabilistic Risk Assessment (CAPRA) Initiative. https://ecapra.org/sites/default/files/documents/ERN-CAPRA-R6-T1-3%20-%20Modelos%20de%20Evaluaci%C3%B3n%20de%20Amenazas.pdf

G-EVER VHASS

Takarada, S. (2013). The next-generation real-time volcanic hazard assessment system in G-EVER, IAVCEI 2013 abstract, Kagoshima, 4P1_4D-O21. http://g-ever1.org/quick/index_en.html

Takarada, S., Bandibas, J. C., & Ishikawa, Y. (2014). Global earthquake and volcanic eruption risk management activities, volcanic hazard assessment support system and Asia-Pacific region hazard mapping project in G-EVER. Episodes Journal of International Geoscience, 37(4), 321-328. http://g-ever1.org/quick/index_en.html

HASSET

Sobradelo, R., Bartolini, S., & Martí, J. (2014). HASSET: a probability event tree tool to evaluate future volcanic scenarios using Bayesian inference. Bulletin of Volcanology, 76(1), 770. https://doi.org/10.1007/s00445-013-0770-x

MatHaz

Bertin, D., Lindsay, J. M., Becerril, L., Cronin, S. J., & Bertin, L. J. (2019). MatHaz: a Matlab code to assist with probabilistic spatio-temporal volcanic hazard assessment in distributed volcanic fields. Journal of Applied Volcanology, 8(1), 1-25. https://doi.org/10.1186/s13617-019-0084-6

VORIS

Felpeto, A., Martí, J., & Ortiz, R. (2007). Automatic GIS-based system for volcanic hazard assessment. Journal of Volcanology and Geothermal Research, 166(2), p. 106-116. https://doi.org/10.1016/j.jvolgeores.2007.07.008

Felpeto, A. (2009). VORIS A GIS-based tool for volcanic hazard assessment. User's Guide. https://doi.org/10.1016/j.jvolgeores.2007.07.008


Other

Generic buffer around a model run

Reference not available

Frequency magnitude, recurrence rate, or other probability density function model

Reference not available

Unnamed cost-distance model [Barrantes Castillo & Malavassi Rojas (2015)]

Barrantes Castillo, G. & Malavassi Rojas, E. (2015). Mapa de peligros del volcán Poás. Cuadernos de Geografica: Revista Colombiana de Geographica, 24(2), p. 157-172. https://doi.org/10.15446/rcdg.v24n2.50219

Unnamed Cox process model [Diggle & Milne (1983)]

Diggle, P. J., & Milne, R. K. (1983). Bivariate Cox processes: some models for bivariate spatial point patterns. Journal of the Royal Statistical Society: Series B (Methodological), 45(1), 11-21. https://doi.org/10.1111/j.2517-6161.1983.tb01224.x


PDCs

PyF

Alberico, I., Lirer, L., Petrosino, P., & Scandone, R. (2008). Volcanic hazard and risk assessment from pyroclastic flows at Ischia island (southern Italy). Journal of volcanology and geothermal research, 171(1-2), 118-136. https://doi.org/10.1016/j.jvolgeores.2007.11.014

PYROFLOW

Wadge, G., Jackson, P., Bower, S. M., Woods, A. W., & Calder, E. (1998). Computer simulations of pyroclastic flows from dome collapse. Geophysical Research Letters, 25(19), p. 3677-3680. https://doi.org/10.1029/98GL00710

PYROFLOW ash-cloud surge model

Wadge, G., Jackson, P., Bower, S. M., Woods, A. W., & Calder, E. (1998). Computer simulations of pyroclastic flows from dome collapse. Geophysical Research Letters, 25(19), p. 3677-3680. https://doi.org/10.1029/98GL00710

Unnamed cellular automata PDC model [Kelfoun et al. 1995]

Kelfoun, K., Thouret, J. C., Lavigne, F., Vincent, P. M., & Camus, G. (1995). Le strato-volcan Merapi (Java): Méthodes d'évaluation des menaces liées aux écoulements pyroclastiques et aux lahars. Géologues (Paris), 106, p. 61-69.


Shock waves

HYDESim

Meyer, E. (2018). HYDESim: The High-Yield Detonation Effects Simulator, an experiment in AJAX and Google Maps programming based on public data and showing the destructive zones of large explosions. https://meyerweb.com/eric/tools/gmap/ https://meyerweb.com/eric/tools/gmap/

Prandl-Meyer shockwave model

White, F. (1985). Mecánica de FLuidos. McGraw Hill, México, p. 608-625

Unnamed shockwave model [Córdoba & Del Risco (1998)]

Córdoba, G. & Del Risco, E. (1998). An approach to the volcanic risk assessment due to shock wave hazard at Galeras volcano influenced area. Cities on Volcanoes I, Naples, 25 p.


Tephra

ASH3D

Schwaiger, H. F., Denlinger, R. P., & Mastin, L. G. (2012). ASH3D: A finite‐volume, conservative numerical model for ash transport and tephra deposition. Journal of Geophysical Research: Solid Earth, 117(B4). https://doi.org/10.1029/2011JB008968

Mastin, L. G., Randall, M. J., Schwaiger, H. F., & Denlinger, R. P. (2013). User’s guide and reference to Ash3d: a three-dimensional model for Eulerian atmospheric tephra transport and deposition. US Geological Survey, Open-File Report 2013-1122, 48 p. https://doi.org/10.1029/2011JB008968

ASHFALL

Hurst, A.W. (1994). ASHFALL – A Computer Program for estimating Volcanic Ash Fallout. Report and Users Guide. Institute of Geological & Nuclear Sciences, Science Report 94/23, 22 p. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.527.1861&rep=rep1&type=pdf

FALL3D

Folch, A., Costa, A., & Macedonio, G. (2009). FALL3D: A computational model for transport and deposition of volcanic ash. Computers & Geosciences, 35(6), p. 1334-1342. https://doi.org/10.1016/j.cageo.2008.08.008

Costa, A., Macedonio, G., & Folch, A. (2006). A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth and Planetary Science Letters, 241(3-4), p. 634-647. https://doi.org/10.1016/j.cageo.2008.08.008

Flexpart

Stohl, A., Hittenberger, M., and Wotawa, G. (1998). Validation of the Lagrangian particle dispersion model FLEXPART against large scale tracer experiment data, Atmospheric Environment, 32, 4245–4264. https://doi.org/10.1016/S1352-2310(98)00184-8

Stohl, A., Forster, C., Frank, A., Seibert, P., and Wotawa, G. (2005). Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461–2474. https://doi.org/10.1016/S1352-2310(98)00184-8

Pisso, I., Sollum, E., Grythe, H., Kristiansen, N. I., Cassiani, M., Eckhardt, S., Arnold, D., Morton, D., Thompson, R. L., Groot Zwaaftink, C. D., Evangeliou, N., Sodemann, H., Haimberger, L., Henne, S., Brunner, D., Burkhart, J. F., Fouilloux, A., Brioude, J., Philipp, A., Seibert, P., and Stohl, A. (2019). The Lagrangian particle dispersion model FLEXPART version 10.4, Geoscientific Model Development, 12, 4955–4997. https://doi.org/10.5194/gmd-12-4955-2019

HAZMAP

Macedonio, G., Costa, A., & Longo, A. (2005). A computer model for volcanic ash fallout and assessment of subsequent hazard. Computers & Geosciences, 31(7), 837-845. https://doi.org/10.1016/j.cageo.2005.01.013

Hysplit

Draxler, R. R., & Hess, G. D. (1998). An overview of the HYSPLIT_4 modelling system for trajectories. Australian meteorological magazine, 47(4), 295-308.

Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059-2077.

NAME

Jones, A., Thomson, D., Hort, M., & Devenish, B. (2007). The UK Met Office's next-generation atmospheric dispersion model, NAME III. In Air pollution modeling and its application XVII (pp. 580-589). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-68854-1_62

PUFF

Searcy, C., Dean, K., & Stringer, W. (1998). PUFF: A high-resolution volcanic ash tracking model. Journal of Volcanology and Geothermal Research, 80(1-2), p. 1-16. https://doi.org/10.1016/S0377-0273(97)00037-1

Tephra2

Bonadonna, C., Connor, C. B., Houghton, B. F., Connor, L., Byrne, M., Laing, A., & Hincks, T. K. (2005). Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. Journal of Geophysical Research: Solid Earth, 110(B3). https://doi.org/10.1029/2003JB002896

Bonadonna, C., Connor L., Connor C.B., Courtland L.M. (2010). Tephra2. https://doi.org/10.1029/2003JB002896

Connor, L., Connor C., Saballos A. (2011). Tephra2 Users Manual. University of South Florida, Tampa, FL. https://vhub.org/resources/756/download/Tephra2_Users_Manual.pdf

TephraProb

Biass, S., Bonadonna, C., Connor, L. & Connor, C. (2016). TephraProb: A Matlab package for probabilistic hazard assessments of tephra fallout. Journal of Applied Volcanology, 5(1), 10. https://doi.org/10.1186/s13617-016-0050-5 https://doi.org/10.1186/s13617-016-0050-5

Unknown tephra model

Reference not available

Unnamed ellipse tephra model [Blong (1981)]

Blong, R.J. (1981). Tephra fallout from Karkar volcano: a first approximation. In: Johnson, R.W. (Ed.), Cooke-Ravian Volume of Volcanological Papers. Geological Survey of Papua New Guinea, Memoirs, 10, p. 85-93. https://doi.org/10.1029/EO064i028p00452-03

Unnamed empirical column height-thickness model [Carey & Sparks (1986)]

Carey, S., & Sparks, R. S. J. (1986). Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bulletin of Volcanology, 48(2-3), 109-125. https://doi.org/10.1007/BF01046546

Unnamed empirical tephra fallout model

Fierstein, J. and Nathenson, M. (1992). Another look at the calculation of fallout tephra volumes. Bulletin of Volcanology, 54: 156-167. https://doi.org/10.1007/BF00278005 https://doi.org/10.1007/BF00278005

Unnamed empirical tephra model [Bertin et al. (2019)]

Bertin, D., Lindsay, J. M., Becerril, L., Cronin, S. J., & Bertin, L. J. (2019). MatHaz: a Matlab code to assist with probabilistic spatio-temporal volcanic hazard assessment in distributed volcanic fields. Journal of Applied Volcanology, 8(1), 1-25. https://doi.org/10.1186/s13617-019-0084-6

Unnamed tephra sedimentation model [Rossi et al. 2019]

Rossi, E., Bonadonna, C., & Degruyter, W. (2019). A new strategy for the estimation of plume height from clast dispersal in various atmospheric and eruptive conditions. Earth and Planetary Science Letters, 505, 1-12. https://doi.org/10.1016/j.epsl.2018.10.007

Unnamed advection-dispersion model [Folch & Felpeto (2005)]

Folch, A., & Felpeto, A. (2005). A coupled model for dispersal of tephra during sustained explosive eruptions. Journal of Volcanology and Geothermal Research, 145(3-4), p. 337-349. https://doi.org/10.1016/j.jvolgeores.2005.01.010

Unnamed tephra model [Hoblitt et al. (1987); Hoblitt & Scott (2011)]

Hoblitt, R.P., Miller, C.D., and Scott, W.E., 1987, Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest, U. S. Geological Survey Open-File Report 87-297, 196 p. https://pubs.er.usgs.gov/publication/ofr87297.

Hoblitt, R.P., & Scott, W.E. (2011). Estimate of tephra accumulation probabilities for the U.S. Department of Energy's Hanford Site, Washington. U.S. Geological Survey, Open-File Report 2011-1064, 15 p. https://pubs.er.usgs.gov/publication/ofr87297.

Unnamed advection-dispersion model [JMA]

Japan Meteorological Agency

Unnamed tephra model [Mastrolorenzo & Pappalardo (2010)]

Mastrolorenzo, G., and L. Pappalardo. (2010). Hazard assessment of explosive volcanism at Somma‐Vesuvius, Journal of Geophysical Research, 115, B12212. https://doi.org/10.1029/2009JB006871

Unnamed lateral wind shear tephra model [Pasquill (1974)]

Pasquill, F. (1974). Atmospheric Diffusion. John Wiley and Sons, New York, N.Y.

Unnamed lateral wind shear tephra model [Shaw et al. (1974)]

Shaw, D.M., Watkins, N.D. & Huang, T.C. (1974). Atmospherically transported volcanic glass in deep sea sediments, theoretical considerations. Journal of Geophysical Research, 79, p. 3087-3094. https://doi.org/10.1029/JC079i021p03087

Unnamed tephra diffusion and fall model [Suzuki (1985)]

Suzuki, T. (1985). Analysis of 1977 Usuyama Pyroclastic Deposit Deposits by Eddy Diffusion Model. Volcano, 30, p. 231-251.

VAFTAD

Heffter, J. L., & Stunder, B. J. (1993). Volcanic ash forecast transport and dispersion (VAFTAD) model. Weather and Forecasting, 8(4), p. 533-541. https://doi.org/10.1175/1520-0434(1993)008%3C0533:VAFTAD%3E2.0.CO;2

VOL-CALPUFF

Scire, J.S. (2000). A User's Guide for the CALPUFF Dispersion Model. Version 5. Earth Tech, Inc., 521 p. http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf

Barsotti, S., & Neri, A. (2008). The VOL‐CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation. Journal of Geophysical Research: Solid Earth, 113(B3). http://www.src.com/calpuff/download/CALPUFF_UsersGuide.pdf


Vent opening

Generic spatial density model

Reference not available

Generic/unknown KDE vent-opening model

Reference not available

Information layer weighting model

Reference not available

QVAST

Bartolini, S., Cappello, A., Martí, J., & Del Negro, C. (2013). QVAST: a new Quantum GIS plugin for estimating volcanic susceptibility. Natural Hazards and Earth Systems Science, 13(11), p. 3031-3042. https://doi.org/10.5194/nhess-13-3031-2013

Unnamed Bayesian fault vent-opening model [Bevilacqua et al. (2017) model 2]

Bevilacqua, A., Bursik, M., Patra, A., Pitman, E. B., & Till, R. (2017). Bayesian construction of a long-term vent opening probability map in the Long Valley volcanic region (CA, USA). Statistics in Volcanology, 3(1), 1. http://dx.doi.org/10.5038/2163-338X.3.1

Unnamed Bayesian KDE vent-opening model [Bevilacqua et al. (2017) model 1]

Bevilacqua, A., Bursik, M., Patra, A., Pitman, E. B., & Till, R. (2017). Bayesian construction of a long-term vent opening probability map in the Long Valley volcanic region (CA, USA). Statistics in Volcanology, 3(1), 1. http://dx.doi.org/10.5038/2163-338X.3.1

Unnamed KDE SAMSE vent-opening model [Connor et al. (2012)]

Connor, L.J., Connor, C.B., Meliksetian, K. & Savov, I. (2012). Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. Journal of Applied Volcanology, 1 (3). https://doi.org/10.1186/2191-5040-1-3

Unnamed KDE vent-opening model [Connor & Connor (2009)]

Connor, C. B., & Connor, L. J. (2009). Estimating spatial density with kernel methods. In Connor, C.B., Chapman, N.A. & Connor, L.J. (eds.) Volcanic and Tectonic Hazard Assessment for Nuclear Facilities, 331–343. Cambridge University Press. http://doi.org/10.1017/CBO9780511635380.015

Connor, C.B., Connor, L.J., Germa, A., Richardson, J.A., Bebbington, M.S., Gallant, E., and Saballos, A. (2019). How to use kernel density estimation as a diagnostic and forecasting tool for distributed volcanic vents. Statistics in Volcanology, 4. p. 1-25. https://doi.org/10.5038/2163-338X.4.3 http://doi.org/10.1017/CBO9780511635380.015

Unnamed vent-opening model [Becerril et al. (2013)]

Becerril, L., Cappello, A., Galindo, I., Neri, M., & Del Negro, C. (2013). Spatial probability distribution of future volcanic eruptions at El Hierro Island (Canary Islands, Spain). Journal of Volcanology and Geothermal Research, 257, p. 21-30. https://doi.org/10.1016/j.jvolgeores.2013.03.005

Unnamed weighted average vent-opening model [Bevilacqua et al. (2017)]

Bevilacqua, A., Bursik, M., Patra, A., Pitman, E. B., & Till, R. (2017). Bayesian construction of a long-term vent opening probability map in the Long Valley volcanic region (CA, USA). Statistics in Volcanology, 3(1), 1. http://dx.doi.org/10.5038/2163-338X.3.1

Vent Opening Probability

Alberico, I., Lirer, L., Petrosino, P., & Scandone, R. (2008). Volcanic hazard and risk assessment from pyroclastic flows at Ischia island (southern Italy). Journal of volcanology and geothermal research, 171(1-2), 118-136. https://doi.org/10.1016/j.jvolgeores.2007.11.014