Browse Maps By Volcano

Select the first letter of volcano.
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Showing 59 volcanoes

Acamarachi, Chile [VNUM = 355096]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Acatenango, Guatemala [VNUM = 342080]

Lahar Hazards of Acatenango Volcano, Guatemala (2001)
Plate 2 in: Vallance, J.W., Schilling, S.P., Matías, O., Rose, W.I. & Howell, M.M. (2001). Volcano Hazards at Fuego and Acatenango, Guatemala. U.S. Geological Survey, Open-File Report 01-431. https://doi.org/10.3133/ofr01431

Volcano hazards of Acatenango Volcano, Guatemala (2001)
Plate 4 in: Vallance, J.W., Schilling, S.P., Matías, O., Rose, W.I. & Howell, M.M. (2001). Volcano Hazards at Fuego and Acatenango, Guatemala. U.S. Geological Survey, Open-File Report 01-431. https://doi.org/10.3133/ofr01431

Adams, United States [VNUM = 321040]

Tribal Lands and Volcano Hazards in the Pacific Northwest (2021)
Gardner, C.A. and Bard, J.A. (2021). How would a volcanic eruption affect your Tribe? U.S. Geological Survey General Information Product 209, https://doi.org/10.3133/gip209.

Modeled Inundation Limits of Potential Lahars from Mount Adams in the White Salmon River Valley, Washington (2018)
Griswold, J.P., Pierson, T.C., and Bard J.A. (2018). Modeled inundation limits of potential lahars from Mount Adams in the White Salmon River valley, Washington. U.S. Geological Survey Open-File Report 2018–1013, scale 1:75,000, 14 p. https://doi.org/10.3133/ofr20181013

Simplified volcano hazards map of Mount Adams, Washington (2014)
Scott, W.E., Iverson, R., Vallance, J.W., Hildreth, W., Driedger, C.L., Ramsey, D.W., & Faust, L.M. (2014). Simplified volcano hazards map of Mount Adams, Washington. U.S. Geological Survey. Mount Adams, WA Simplified Hazards Map. https://www.usgs.gov/media/images/mount-adams-wa-simplified-hazards-map (Modified from: U.S. Geological Survey, Open-File Report 95-492)

Map showing one-year probability of accumulation of 1 centimeter (0.4 inch) or more of tephra from eruptions of volcanoes in the Cascade Range. (2013)
Nathensen, M. (2013). Map showing one-year probability of accumulation of 1 centimeter (0.4 inch) or more of tephra from eruptions of volcanoes in the Cascade Range. U.S. Geological Survey. Mount Bachelor Hazards. https://www.usgs.gov/volcanoes/mount-bachelor/hazards

Map showing annual probability of 1 centimeter or more of tephra accumulation from any major Cascade volcano (2012)
Figure 15 in: Clynne, M. A., Robinson, J. E., Nathenson, M. & Muffler, L. P. (2012). Volcano hazards assessment for the Lassen region, northern California. U.S. Geological Survey, Scientific Investigations Report 2012-5176-A, 47 p., 1 plate. https://doi.org/10.3133/sir20125176A

Preliminary probabilistic tephra-hazard map for Pacific Northwest (2011)
Figure 2 in: Hoblitt, R.P., & Scott, W.E. (2011). Estimate of tephra accumulation probabilities for the U.S. Department of Energy's Hanford Site, Washington. U.S. Geological Survey, Open-File Report 2011-1064, 15 p. https://doi.org/10.3133/ofr20111064

Postglacial Lahars and Lahar-Hazard Zones at Mount Adams Volcano (1998)
Plate 2 in: Vallance, J.W. (1999). Postglacial lahars and potential hazards in the White Salmon River system on the southwest flank of Mount Adams, Washington. U.S. Geological Survey, Bulletin 2161, 49 p., 2 plates. https://doi.org/10.3133/b2161

Postglacial Lava Flows and Lava Flow-Hazard Zones at Mount Adams Volcano (1998)
Plate 1 in: Vallance, J.W. (1999). Postglacial lahars and potential hazards in the White Salmon River system on the southwest flank of Mount Adams, Washington. U.S. Geological Survey, Bulletin 2161, 49 p., 2 plates. https://doi.org/10.3133/b2161

Map showing annual probability of 1 cm or more of tephra accumulation in Washington, Oregon, and northern California from eruptions throughout the Cascade Range. (1997)
Figure 4 in: Sherrod, D.R., Mastin, L.G., Scott, W.E. & Schilling, S.P. (1997). Volcano hazards at Newberry Volcano, Oregon. U.S. Geological Survey, Open-File Report 97-513, 14 p. https://doi.org/10.3133/ofr97513

Annual probability of 1 cm (about 0.4 inches) or more of tephra accumulation from any major Cascade volcano (1995)
Figure 5b in: Gardner, C.A., Scott, K.M., Miller, C.D., Myers, B., Hildreth, W., & Pringle, P.T. (1995). Potential volcanic hazards from future activity of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 95-498, 16 p., 1 plate, scale 1:100,000. https://doi.org/10.3133/ofr95498

Annual probability of accumulation of ten or more centimeters (four or more inches) of tephra in Washington and Oregon from eruptions throughout the Cascade Range. (1995)
Figure 3 in: Wolfe, E.W. & Pierson, T.C. (1995). Volcanic-Hazard Zonation for Mount St. Helens, Washington, 1995. U.S. Geological Survey, Open-File Report 95-497, 12 p., 1 plate. https://doi.org/10.3133/ofr95497

Map of south-central Washington showing young volcanoes, lava-flow hazard zones, and lateral-blast hazard zone for Mount Adams (1995)
Plate 1 in: Scott, W.E., Iverson, R.M., Vallance, J.W., & Hildreth, W. (1995). Volcano Hazards in the Mount Adams Region, Washington. U.S. Geological Survey, Open-File Report 95-492. https://doi.org/10.3133/ofr95492

Volcano-Hazard-Zonation Map of Mount Adams, Washington (1995)
Plate 2 in: Scott, W.E., Iverson, R.M., Vallance, J.W., & Hildreth, W. (1995). Volcano Hazards in the Mount Adams Region, Washington. U.S. Geological Survey, Open-File Report 95-492. https://doi.org/10.3133/ofr95492

Contour map of the estimated annual probability of the accumulation of 1 cm or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 4 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Contour map of the estimated annual probability of the accumulation of 1 m or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 2 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Contour map of the estimated annual probability of the accumulation of 10 cm or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 3 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Volcanic-hazard zones in the Cascades Range (1987)
Plate 1 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Washington Geologic Information Portal - Volcanic Hazards (USGS) ([?])
Washington Department of Natural Resources. Geologic Information Portal.

Adatarayama, Japan [VNUM = 283170]

Adatarayama Volcanic Alert Levels (2019)
Japan Meteorological Agency. (2019). Adatarayama Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Mt. Adatara Evacuation Routes Around the Crater Area (2019)
Adatarayama Volcanic Disaster Management Council. (2019). Mt. Adatara Evacuation Routes Around the Crater Area.

Mt. Adatara Evacuation Routes Around the Crater Area [Chinese version] (2019)
Adatarayama Volcanic Disaster Management Council. (2019). Mt. Adatara Evacuation Routes Around the Crater Area.

Mt. Adatara Evacuation Routes Around the Crater Area [English version] (2019)
Adatarayama Volcanic Disaster Management Council. (2019). Mt. Adatara Evacuation Routes Around the Crater Area.

Mt. Adatara Evacuation Routes Around the Crater Area [Korean version] (2019)
Adatarayama Volcanic Disaster Management Council. (2019). Mt. Adatara Evacuation Routes Around the Crater Area.

Preparation for hiking Mt. Adatara (2019)
Adatarayama Volcanic Disaster Management Council. (2019). Preparation for hiking Mt. Adatara.

Preparation for hiking Mt. Adatara [Chinese version] (2019)
Adatarayama Volcanic Disaster Management Council. (2019). Preparation for hiking Mt. Adatara.

Preparation for hiking Mt. Adatara [English version] (2019)
Adatarayama Volcanic Disaster Management Council. (2019). Preparation for hiking Mt. Adatara.

Preparation for hiking Mt. Adatara [Korean version] (2019)
Adatarayama Volcanic Disaster Management Council. (2019). Preparation for hiking Mt. Adatara.

Adatarayama Volcano Disaster Prevention Map [Fukushima City] (2016)
Inawashiro Town. (2016). Adatarayama Volcano Disaster Prevention Map [Inawashiro Town].

Adatarayama Volcano Disaster Prevention Map [Koriyama City] (2016)
Koriyama City. (2016). Adatarayama Volcano Disaster Prevention Map [Koriyama City].

Adatarayama Volcano Disaster Prevention Map [Motomiya City] (2016)
Motomiya City. (2016). Adatarayama Volcano Disaster Prevention Map [Motomiya City].

Adatarayama Volcano Disaster Prevention Map [Nihonmatsu City] (2016)
Nihonmatsu City. (2016). Adatarayama Volcano Disaster Prevention Map [Nihonmatsu City].

Adatarayama Volcano Disaster Prevention Map [Otama Village] (2016)
Otama Village. (2016). Adatarayama Volcano Disaster Prevention Map [Otama Village].

Adatarayama Volcano Disaster Prevention Map [Otama Village] (2016)
Fukushima City. (2016). Adatarayama Volcano Disaster Prevention Map [Fukushima City].

Volcanic hazard map of Adatarayama (2016)
Volcano Disaster Management Councils of Adatarayama. (2016). Volcanic Hazard Map of Adatarayama. Fukushima City, Koriyama City, Nihonmatsu City, Motomiya City, Inawashiro Town, Otama Village.

Agua, Guatemala [VNUM = 342100]

Lahar Hazards at Agua Volcano, Guatemala (2001)
Plate 1 in: Schilling, S.P., Vallance, J.W., Matías, O., & Howell, M.M. (2001). Lahar Hazards at Agua Volcano, Guatemala. U.S. Geological Survey, Open-File Report 01-432, 16 p., 1 plate. https://doi.org/10.3133/ofr01432

Agua de Pau, Sao Miguel, Azores [Portugal] [VNUM = 382090]

As for Fig. 9.3 for burial beneath 25 to 100 cm of pyroclastic fall deposits (1983)
Figure 9.4 in: Booth, B., Croasdale, R., & Walker, G.L. (1983). Volcanic hazard on Sao Miguel, Azores. In: Tazieff, H. & Sabroux, J.C. (eds.). Forecasting Volcanic Events. Elsevier, Amsterdam. p. 99-109.

Other volcanic hazards (1983)
Figure 9.6 in: Booth, B., Croasdale, R., & Walker, G.L. (1983). Volcanic hazard on Sao Miguel, Azores. In: Tazieff, H. & Sabroux, J.C. (eds.). Forecasting Volcanic Events. Elsevier, Amsterdam. p. 99-109.

The extent and frequency of hazard from burial beneath 100 to 400 cm of pyroclastic fall deposits, based on the record of the past 5,000 years (1983)
Figure 9.3 in: Booth, B., Croasdale, R., & Walker, G.L. (1983). Volcanic hazard on Sao Miguel, Azores. In: Tazieff, H. & Sabroux, J.C. (eds.). Forecasting Volcanic Events. Elsevier, Amsterdam. p. 99-109.

The extent of hazard by impact from large falling pyroclasts (1983)
Figure 9.5 in: Booth, B., Croasdale, R., & Walker, G.L. (1983). Volcanic hazard on Sao Miguel, Azores. In: Tazieff, H. & Sabroux, J.C. (eds.). Forecasting Volcanic Events. Elsevier, Amsterdam. p. 99-109.

The extent of hazard from burial beneath 400 cm or more in thickness of trachytic pyroclastic deposits (1983)
Figure 9.2 in: Booth, B., Croasdale, R., & Walker, G.L. (1983). Volcanic hazard on Sao Miguel, Azores. In: Tazieff, H. & Sabroux, J.C. (eds.). Forecasting Volcanic Events. Elsevier, Amsterdam. p. 99-109.

Aguas Delgadas, Chile [VNUM = 355857]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Aguilera, Chile [VNUM = 358062]

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Agung, Indonesia [VNUM = 264020]

Volcanic Hazard Map of Agung Volcano, Bali Province (2015)
Kusnadi, I., Haerani, N., & Bronto, S. (2015). Volcanic Hazard Map of Agung Volcano, Bali Province. Center for Volcanology and Geological Hazard Mitigation (CVGHM). Bandung.

Aira, Japan [VNUM = 282080]

Sakurajima Volcano Hazard Map [English version] (2018)
Kagoshima City. (2018). [English version] Sakurajima Volcano Hazard Map (published March 2010) [updated March 2018]. https://web.archive.org/web/20211028200319/https://www.city.kagoshima.lg.jp/kikikanri/kurashi/bosai/bosai/map/sakurajima.html

Sakurajima Volcano Hazard Map [Japanese version] (2018)
Kagoshima City. (2018). [Japanese version] Sakurajima Volcano Hazard Map (published March 2010) [updated March 2018]. https://web.archive.org/web/20211028200319/https://www.city.kagoshima.lg.jp/kikikanri/kurashi/bosai/bosai/map/sakurajima.html

Sakurajima Volcano Hazard Map [Korean version] (2018)
Kagoshima City. (2018). [Korean version] Sakurajima Volcano Hazard Map (published March 2010) [updated March 2018]. https://web.archive.org/web/20211028200319/https://www.city.kagoshima.lg.jp/kikikanri/kurashi/bosai/bosai/map/sakurajima.html

Sakurajima Volcano Hazard Map [Simplified Chinese version] (2018)
Kagoshima City. (2018). [Simplified Chinese version] Sakurajima Volcano Hazard Map (published March 2010) [updated March 2018]. https://web.archive.org/web/20211028200319/https://www.city.kagoshima.lg.jp/kikikanri/kurashi/bosai/bosai/map/sakurajima.html

Sakurajima Volcano Hazard Map [Traditional Chinese version] (2018)
Kagoshima City. (2018). [Traditional Chinese version] Sakurajima Volcano Hazard Map (published March 2010) [updated March 2018]. https://web.archive.org/web/20211028200319/https://www.city.kagoshima.lg.jp/kikikanri/kurashi/bosai/bosai/map/sakurajima.html

Sakurajima Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Sakurajima Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Sakurajima Volcano Hazard Map (2013)
Kagoshima City. (2013). Sakurajima Volcano Hazard Map.

Akan, Japan [VNUM = 285070]

Meakandake Hazard Map (2019)
Page 9-10 in: Ashoro Town. (2019). Ashoro Town Disaster Prevention Guide Map. 30 p.

Meakandake Volcanic Alert Levels (2018)
Japan Meteorological Agency. (2018). Meakandake Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Volcanic hazard map of Meakandake - If Largest Eruption Occurs (2012)
Page 10-11 in: Volcano Disaster Management Councils of Meakandake. (2012). Meakandake Volcanic Disaster Prevention Guidebook. Kushiro City.

Volcanic hazard map of Meakandake - If Small Eruption Occurs (2012)
Page 8-9 in: Volcano Disaster Management Councils of Meakandake. (2012). Meakandake Volcanic Disaster Prevention Guidebook. Kushiro City.

Ashoro Town Meakan-dake Disaster Prevention Map (2000)
Ashoro Town. (2000). Ashoro Town Meakan-dake Disaster Prevention Map.

Akita-Komagatake, Japan [VNUM = 283230]

Akita-Komagatake Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Akita-Komagatake Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Akita Komagatake Volcano Disaster Prevention Map (2013)
Akita Prefecture. (2013). Akita Komagatake Volcano Disaster Prevention Map.

Akita-Yakeyama, Japan [VNUM = 283260]

Akita-Yakeyama Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Akita-Yakeyama Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Akita-Yakeyama Volcanic Disaster Prevention Map (2002)
Akita Prefecture. (2002). Akita-Yakeyama Volcanic Disaster Prevention Map.

Enlarged view around Yakeyama (2002)
Akita Prefecture. (2002). Akita-Yakeyama Volcanic Disaster Prevention Map.

Akutan, United States [VNUM = 311320]

Preliminary Volcano Hazard Assessment for Akutan Volcano, East-Cental Aleutian Islands, Alaska (1998)
Plate 1 in: Waythomas, C. F., Power, J. A., Richter, D. H. & McGimsey, R. G. (1998). Preliminary volcano-hazard assessment for Akutan Volcano east-central Aleutian Islands, Alaska. U.S. Geological Survey, Open-File Report 98-360, 36 p., 1 plate. https://doi.org/10.3133/ofr98360

Alagogshak (Martin), United States [VNUM = 312140]

Preliminary Volcano-Hazard Assessment for the Katmai Volcanic Cluster (2001)
Plate 1 in: Fierstein, J. & Hildreth, W. (2001). Preliminary volcano-hazard assessment for the Katmai Volcanic Cluster, Alaska. U.S. Geological Survey Open-File Report 00-489, 50 p., 1 plate. https://doi.org/10.3133/ofr00489

Alaid, Russia [VNUM = 290390]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Albuquerque, United States [VNUM = 327816]

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Alítar (Purico Complex), Chile [VNUM = 355094]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Almolonga, Guatemala [VNUM = 342040]

Areas of potential hazards from lateral blasts, debris avalanche and debris flow, and tephra fall at Cerro Quemado, Guatemala. (1992)
Figure 7 in: Conway, F. M., Vallance, J. W., Rose, W. I., Johns, G. W., & Paniagua, S. (1992). Cerro Quemado, Guatemala: the volcanic history and hazards of an exogenous volcanic dome complex. Journal of Volcanology and Geothermal Research, 52(4), p. 303-323. https://doi.org/10.1016/0377-0273(92)90051-E

Areas of potential hazards from lava flow, pyroclastic flow, and associated ash cloud at Cerro Quemado, Guatemala. (1992)
Figure 6 in: Conway, F. M., Vallance, J. W., Rose, W. I., Johns, G. W., & Paniagua, S. (1992). Cerro Quemado, Guatemala: the volcanic history and hazards of an exogenous volcanic dome complex. Journal of Volcanology and Geothermal Research, 52(4), p. 303-323. https://doi.org/10.1016/0377-0273(92)90051-E

Ambae, Vanuatu [VNUM = 257030]

Ambae caldera safety map (2020)
Figure 1 in: Vanuatu Meteorology & Geo-Hazards Department. (2020). Vanuatu Volcano Alert Bulletin No. 4 - Ambae Activity, Thursday May 28th 2020.

Ambae Long-Term Background Volcanic Hazards Map (2019)
Vanuatu Meteorology & Geo-Hazards Department. (2019). Ambae Long-Term Background Volcanic Hazards Map. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science.

Ambae Safety Map (2019)
Vanuatu Meteorology & Geo-Hazards Department. (2019). Ambae Safety Map. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science.

Carte des Risques Volcaniques d'Ambae à Long-terme (2019)
Vanuatu Meteorology & Geo-Hazards Department. (2019). Carte des Risques Volcaniques d'Ambae à Long-terme. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science.

Long-Term Denja Map Blong Volkeno Long Ambae (2019)
Vanuatu Meteorology & Geo-Hazards Department. (2019). Long-Term Denja Map Blong Volkeno Long Ambae. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science.

Current Ambae Volcano Activity Safety Map (2018)
Vanuatu Meteorology & Geo-Hazards Department. (2018). Current Ambae Volcano Activity Safety Map 04.04.2018. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science.

Current Ambae Volcano Activity Safety Map (2018)
Vanuatu Meteorology & Geo-Hazards Department. (2018). Current Ambae Volcano Activity Safety Map 21.07.2018. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science.

Vanuatu: Mt. Ambae: Volcano, risk areas, infrastructure and settlements data from ProVention Consortium, 2003 (2005)
United Nations Office for the Coordination of Humanitarian Affairs Asia and the Pacific (UN OCHA-ROAP) Information Management Unit. (2005). Vanuatu: Mt. Ambae Volcano, risk areas, infrastructure and settlements. UN OCHA-ROAP ROAP-VUT001-v1

Ambae (2001)
Cronin, S.J., Gaylord, D.R., Charley, D., Alloway, B.V., Wallez, S., & Esau, J.W. (2004). Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bulletin of volcanology, 66(7), p. 652-668. https://doi.org/10.1007/s00445-004-0347-9. (Reprinted in: Cronin, S. J., & Németh, K., Stewart, R.B. (2006). Volcanic hazards planning on rifting island and fissure volcanoes. Joint Conference of the Geological Society of New Zealand and the New Zealand Geophysical Society.)

Black and white, English language version of the revised three-colour hazard map for Ambae, primarily taking into account renewed activity of the main summit crater and disturbance of the crater lakes (2001)
Figure 9 in: Cronin, S.J., Gaylord, D.R., Charley, D., Alloway, B.V., Wallez, S., & Esau, J.W. (2004). Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bulletin of volcanology, 66(7), p. 652-668. https://doi.org/10.1007/s00445-004-0347-9

Four different workgroup maps of the Lolovange area (2001)
Figure 4 in: Cronin, S.J., Gaylord, D.R., Charley, D., Alloway, B.V., Wallez, S., & Esau, J.W. (2004). Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bulletin of volcanology, 66(7), p. 652-668. https://doi.org/10.1007/s00445-004-0347-9

Maps of the Lolowai area, locations of facilities and services, and potential reuge and pick-up locations form the perspectives of four working groups. (2001)
Figure 7 in: Cronin, S.J., Gaylord, D.R., Charley, D., Alloway, B.V., Wallez, S., & Esau, J.W. (2004). Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bulletin of volcanology, 66(7), p. 652-668. https://doi.org/10.1007/s00445-004-0347-9

Volcanic Hazard Map for Aoba Island - Carte des Risques Volcaniques pour l'Ile d'Aoba (Vanuatu) (1995)
Appendix 1, Page 104 (in reprint) in: Monzier, M. & Robin, C. (1995). Volcanic Hazard Map for Aoba Island - Carte des Risques Volcaniques pour l'Ile d'Aoba (Vanuatu). ORSTOM. (Reprinted in: Esau Wate, J. (2016). National Disaster Management Structure, Volcanic Alert Levels, Emergency Evacuation Plans and Public Awareness Strategies for Vanuatu. In: Taylor, P.W. (Ed.) Volcanic Hazards and Emergency Management in the Southwest Pacific, SPC Technical Bulletin, SPC00017, p. 96-105.)

Volcano Fact Sheet Ambae Volcano ([?])
Vanuatu Meteorology & Geo-Hazards Department. Volcano Fact Sheet Ambae Volcano. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office.

Ambang, Indonesia [VNUM = 266020]

Volcanic Hazard Map of Ambang Volcano North Sulawesi Province (2007)
Hadisantono, R.D., Haerani, N., Martono, A., Pujowarsito, & Purwoto. (2007). Volcanic Hazard Map of Ambang Volcano North Sulawesi Province. Center for Volcanology and Geological Hazard Mitigation (CVGHM).

Amboy, United States [VNUM = 323826]

Potential Hazards from future volcanic eruptions in California (1989)
Plate 1 in: Miller, C.D. (1989). Potential hazards from future volcanic eruptions in California. U.S. Geological Survey, Bulletin 1847, 17 p., 2 tables, 1 plate, scale 1:500,000.

Ambrym, Vanuatu [VNUM = 257040]

Ambrym Long-Term Background Volcanic Hazards Map (2016)
Vanuatu Meteorology & Geo-Hazards Department. (2016). Ambrym Long-Term Background Volcanic Hazards Map. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science, The Vanuatu Red Cross Society, Croix Rouge Francaise, USAID.

Ambrym Safety Map (2016)
Vanuatu Meteorology & Geo-Hazards Department. (2016). Ambrym Safety Map. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science.

Carte des Risques Volcaniques d'Ambrym à Long-terme (2016)
Vanuatu Meteorology & Geo-Hazards Department. (2016). Carte des Risques Volcaniques d'Ambrym à Long-terme. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science, The Vanuatu Red Cross Society, Croix Rouge Francaise, USAID.

Long-term Denja Map Blong Volkeno Long Ambrym (2016)
Vanuatu Meteorology & Geo-Hazards Department. (2016). Long-term Denja Map Blong Volkeno Long Ambrym. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science, The Vanuatu Red Cross Society, Croix Rouge Francaise, USAID.

Volcanic Hazard Map for Ambrym Island - Carte des Menaces Volcaniques pour l'Ile d'Ambrym (Vanuatu) (1996)
Appendix 1, Page 103 (in reprint) in: Monzier, M. & Robin, C. (1996). Volcanic Hazard Map for Ambrym Island - Carte des Menaces Volcaniques pour l'Ile d'Ambrym (Vanuatu). ORSTOM. (Reprinted in: Esau Wate, J. (2016). National Disaster Management Structure, Volcanic Alert Levels, Emergency Evacuation Plans and Public Awareness Strategies for Vanuatu. In: Taylor, P.W. (Ed.) Volcanic Hazards and Emergency Management in the Southwest Pacific, SPC Technical Bulletin, SPC00017, p. 96-105.)

Volcano Fact Sheet Ambrym Volcano ([?])
Vanuatu Meteorology & Geo-Hazards Department. Volcano Fact Sheet Ambrym Volcano. Government of Vanuatu, Vanuatu Meteorology & Geo-Hazards Department, Vanuatu National Disaster Risk Management Office, New Zealand Foreign Affairs & Trade Aid Programme, GNS Science.

Ampato (Sabancaya), Peru [VNUM = 354006]

Mapas de Peligros del Complejo Volcánico Ampato-Sabancaya (2014)
Mariño, J., Samaniego, P., Rivera, M., Bellot, N., Manrique, N., Macedo, L., & Delgado, R. (2014). Mapas de Peligros del Complejo Volcánico Ampato-Sabancaya. Instituto Geologico Minero y Metalurgico (INGEMMET), Direccion de Geologia Ambiental y Riesgo, mapa escala 50,000.

Mapa Preliminar de Zonificación de Peligros Volcanicos - Sur del Perú (2003)
Comisión Multisectorial de Reducción de Riesgos en el Desarrollo (CMRRD) & Dirección General de Programación Multianual del Sector Público - MEF (DGPM) (2003). Mapa preliminar de zonificación de peligros volcánicos - Sur del Perú. Estrategía Nacional de Reducción de Riesgos para el Desarrollo. Escala 1:3000000

Aniakchak, United States [VNUM = 312090]

Preliminary Volcano-Hazard Assessment for Aniakchak Volcano, Alaska (2001)
Plate 1 in: Neal, C.A., McGimsey, R.G., Miller, T.P., Riehle, J.R., Waythomas, C.F. (2001). Preliminary Volcano-Hazard Assessment for Aniakchak Volcano, Alaska. U.S. Geological Survey, Open-File Report 00-519, 42 p.

Anticura Group (Antillanca Volcanic Complex), Chile [VNUM = 357153]

Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos (2020)
Toloza, V., Jorquera, C., Mella, M., Gho, R. (2020). Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 36, 63 p., 1 mapa escala 1:75.000. Santiago.

Probabilidad espacial del CVP-CC de hospedar un centro eruptivo en el futuro (2020)
Figure 6 in: Toloza, V., Jorquera, C., Mella, M., Gho, R. (2020). Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 36, 63 p., 1 mapa escala 1:75.000. Santiago.

Zonificación de peligro por flujos de lavas en el volcán Puyehue, y los conos Refugio y Anticura (2020)
Figure 7 in: Toloza, V., Jorquera, C., Mella, M., Gho, R. (2020). Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 36, 63 p., 1 mapa escala 1:75.000. Santiago.

Zonificación de peligro por piroclastos balísticos en el Complejo Volcánico Puyehue-Cordón Caulle (2020)
Figure 15 in: Toloza, V., Jorquera, C., Mella, M., Gho, R. (2020). Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 36, 63 p., 1 mapa escala 1:75.000. Santiago.

Antillanca Volcanic Complex, Chile [VNUM = 357153]

Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos (2020)
Toloza, V., Jorquera, C., Mella, M., Gho, R. (2020). Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 36, 63 p., 1 mapa escala 1:75.000. Santiago.

Probabilidad espacial del CVP-CC de hospedar un centro eruptivo en el futuro (2020)
Figure 6 in: Toloza, V., Jorquera, C., Mella, M., Gho, R. (2020). Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 36, 63 p., 1 mapa escala 1:75.000. Santiago.

Zonificación de peligro por flujos de lavas en el volcán Puyehue, y los conos Refugio y Anticura (2020)
Figure 7 in: Toloza, V., Jorquera, C., Mella, M., Gho, R. (2020). Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 36, 63 p., 1 mapa escala 1:75.000. Santiago.

Zonificación de peligro por piroclastos balísticos en el Complejo Volcánico Puyehue-Cordón Caulle (2020)
Figure 15 in: Toloza, V., Jorquera, C., Mella, M., Gho, R. (2020). Peligros del Complejo Volcánico Puyehue-Cordón Caulle, regiones de Los Ríos y Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 36, 63 p., 1 mapa escala 1:75.000. Santiago.

Peligros Volcánicos del Complejo Volcánico Antillanca (2012)
Silva, C. & Lara, L. (2012). Mapa Preliminar de Peligros Volcánicos Complejo Volcánico Antillanca. Informe inédito, Subdirección Nacional de Geología. Programa de Riesgo Volcánico. mapa escala 1:100.000. Santiago.

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Antisana, Ecuador [VNUM = 352030]

Mapa de los Peligros Volcanicos Potenciales Asociados con el Volcan Antisana (1989)
Hall, M.L., Beate, B., & von Hillebrandt, C.G. (1989). Mapa de los Peligros Volcanicos Potenciales Asociados con el Volcan Antisana. Instituto Geofisico de la Escuela Politecnica Nacional (IG-EPN), mapa escala 1:50.000. Quito.

Mapa de los "Volcanes Activos" del Ecuador (1982)
Salazar, E. & Bermúdez, R. (1982). Mapa de los "Volcanes Activos" del Ecuador. Mapa Base del Ecuador, Vulcanología. Ministerio de Energía y Minas, Instituto Ecuatoriano de Minería, Quito.

Antofagasta Volcanic Field, Argentina [VNUM = 355180]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Antuco, Chile [VNUM = 357080]

Peligros del Volcán Antuco (2016)
Moreno, H. (2016). Peligros del Volcán Antuco, Región del Biobío. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie de Geología Ambiental 27: 1 mapa escala 1:50.000. Santiago.

Mapa Preliminar de Peligros del Volcán Antuco (2012)
Moreno, H. (2012). Mapa Preliminar de Peligros del Volcán Antuco Región del Biobio. Servicio Nacional de Geología y Minería (SERNAGEOMIN), mapa escala 1:75,000. Santiago.

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Aogashima, Japan [VNUM = 284060]

Aogashima Volcanic Alert Levels (2018)
Japan Meteorological Agency. (2018). Aogashima Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Aogashima volcanic hazard map (assumed crater position, volcanic blocks, pyroclastic surge) (2017)
Aogashima Volcano Disaster Prevention Council. (2017). Aogashima volcanic hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Aogashima volcano hazard map (volcanic ash (including volcanic lapilli): 4 million m³ DRE) (2017)
Aogashima Volcano Disaster Prevention Council. (2017). Aogashima volcanic hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Aogashima volcano hazard map (volcanic ash (including volcanic lapilli): 400,000 m³ DRE) (2017)
Aogashima Volcano Disaster Prevention Council. (2017). Aogashima volcanic hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Apacheta (Cerro del Azufre), Chile [VNUM = 355061]

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Apagado, Chile [VNUM = 358024]

Peligros del Volcán Apagado (2016)
Mella, M. (2016). Peligros del Volcán Apagado, Región de Los Lagos. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carta Geológica de Chile, Serie Geología Ambiental 26, mapa escala 1:50.000. Santiago.

Mapa Preliminar de Peligros del Volcán Apagado (2013)
Mella, M (2013). Mapa Preliminar de Peligros del Volcán Apagado, Región de los Lagos. Servicio Nacional de Geología y Minería (SERNAGEOMIN), mapa escala 1:50,000. Santiago.

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Apoyeque, Nicaragua [VNUM = 344091]

Mapa de amenaza determinista por caída de cenizas [m] en el volcán Apoyeque ([?])
Figure 6-31 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Mapa de amenaza determinista por flujos piroclásticos en el volcán Apoyeque ([?])
Figure 6-30 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Mapa de Vulnerabilidades y Peligro ante Volcanes ([?])
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Aracar, Argentina [VNUM = 355160]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Aragats, Armenia [VNUM = 214060]

Spatial density model for 27 events on the flanks of Aragats volcano (2012)
Figure 8 in: Connor, L.J., Connor, C.B., Meliksetian, K., Savov, I. (2012). Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. Journal of Applied Volcanology 1, 3. https://doi.org/10.1186/2191-5040-1-3

Arenal, Costa Rica [VNUM = 345033]

Áreas de Peligro por Coladas de Lava (2023)
Figure 6.17 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Arriba, proyección poblacional y crecimiento urbano de La Fortuna 2011-2030, mientras que abajo se presenta y su exposición ante los peligros volcánicos (2023)
Figure 8.14 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Concentración diaria de PTS por deposición húmeda debido a las emisiones del volcán Arenal (2023)
Figure 6.11 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Concentración diaria de PTS por deposición seca debido a las emisiones del volcán Arenal (2023)
Figure 6.14 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Concentración diaria de SO2 por deposición húmeda debido a las emisiones del volcán Arenal (2023)
Figure 6.10 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Concentración diaria de SO2 por deposición húmeda debido a las emisiones del volcán Arenal (2023)
Figure 6.12 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Dispersión de las PTS por la emisión del volcán Arenal (2023)
Figure 6.9 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Dispersión del SO2 por la emisión del volcán Arenal (2023)
Figure 6.8 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Mapa de peligros con base en el modelado de la extensión de los lahares (2023)
Figure 6.46 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Mapa de peligros volcánicos por flujos piroclásticos con diferente relación H/L basado en casos hipotéticos prehistóricos (particularmente H/L 0.15), que se puedan repetir en el futuro (2023)
Figure 6.20b in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Mapa de restricción de uso del suelo, volcán Arenal (2023)
Figure 8.17 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Mapa del modelado computacional de los peligros volcánicos por flujos piroclásticos con diferente relaciones H (altura)/L (longitud), basado en casos históricos (2023)
Figure 6.20a in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Patrón de caída generado a partir de la granulometría de la muestra MH8, con una columna de 16 km y el viento presente a las 11:00 a.m. (2023)
Figure 6.38 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Patrón de caída generado a partir de la MC39 con el viento presente a las 11:00 a.m. y una columna de 16 km (2023)
Figure 6.37 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Patrón de caída generado con una columna de 16 km y el viento presente a las 11:00 a.m., a partir de la granulometría de la muestra MH10 (2023)
Figure 6.39 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Patrón generado con la MC39, viento a las 3:00 p.m., columna de 16 km (2023)
Figure 6.36 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Peligro por caída de proyectiles balísticos (2023)
Figure 6.44 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Peligro por caída de proyectiles balísticos (2023)
Figure 6.44 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Posible afectación de puentes a corto y largo plazo (2023)
Figure 8.8 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Posible afectación de puentes por peligro volcánico a corto plazo (2023)
Figure 8.7 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Propuesta para la división del círculo de 5.5 km de radio en subzonas de acuerdo con la peligrosidad a corto plazo, discutida en el texto (Soto, 2004) (2023)
Figure 8.21 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Relación entre el peligro volcánico y la vulnerabilidad de las estructuras (2023)
Figure 8.9 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Rutas de evacuación estudiadas a lo largo del volcán Arenal. (2023)
Figure 8.10 in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Planta Hidroeléctrica Arenal. Amenaza por Caída de Ceniza Volcánica Erupción Estromboliana Violenta a Mediano Plazo. (2017)
Vargas, A. & Alvarado, G. E. (2017). Amenaza volcánica sobre las líneas de transmisión y subestaciones eléctricas del ICE, Costa Rica. Área de Amenazas y Auscultación Sismológica y Volcánica, ICE, San José [Inf. Interno]. Reprinted in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Planta Hidroeléctrica Arenal. Amenaza por Caída de Ceniza Volcánica Erupción Pliniana-Subpliniana a Largo Plazo. (2017)
Vargas, A. & Alvarado, G. E. (2017). Amenaza volcánica sobre las líneas de transmisión y subestaciones eléctricas del ICE, Costa Rica. Área de Amenazas y Auscultación Sismológica y Volcánica, ICE, San José [Inf. Interno]. Reprinted in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Planta Hidroeléctrica Arenal. Amenaza por Caída de Ceniza Volcánica Erupcioón Vulcaniana a Corto Plaza. (2017)
Vargas, A. & Alvarado, G. E. (2017). Amenaza volcánica sobre las líneas de transmisión y subestaciones eléctricas del ICE, Costa Rica. Área de Amenazas y Auscultación Sismológica y Volcánica, ICE, San José [Inf. Interno]. Reprinted in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Planta Hidroeléctrica Arenal. Amenaza por Lahares Presa Sangregado. (2017)
Figure 6.7 in: Alvarado, G. E. & Vargas, A. (2017). Actualización de la evaluación del peligro volcánico para el Complejo Hidroeléctrico Arenal. Instituto Costarricense de Electricidad [Inf. Interno]. Reprinted in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Planta Hidroeléctrica Arenal. Amenaza por Lahares Presa Sangregado. Volumen: 100.000 m3 (2017)
Alvarado, G. E. & Vargas, A. (2017). Actualización de la evaluación del peligro volcánico para el Complejo Hidroeléctrico Arenal. Instituto Costarricense de Electricidad [Inf. Interno]. Reprinted in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Planta Hidroeléctrica Arenal. Amenaza por Lahares Presa Sangregado. Volumen: 300.000 m3 (2017)
Figure 6.7 in: Alvarado, G. E. & Vargas, A. (2017). Actualización de la evaluación del peligro volcánico para el Complejo Hidroeléctrico Arenal. Instituto Costarricense de Electricidad [Inf. Interno]. Reprinted in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Pyroclastic flow hazard map of Arenal corresponding to the “current” hazard scenario (Scenario 1) (2012)
Figure 8 in: Oramas-Dorta, D., Cole, P. D., Wadge, G., Alvarado, G. E., & Soto, G. J. (2012). Pyroclastic flow hazard at Arenal volcano, Costa Rica: Scenarios and assessment. Journal of volcanology and geothermal research, 247, 74-92. https://doi.org/10.1016/j.jvolgeores.2012.07.015

Pyroclastic flow hazard map of Arenal corresponding to the “near-future” hazard scenario (Scenario 2) (2012)
Figure 9 in: Oramas-Dorta, D., Cole, P. D., Wadge, G., Alvarado, G. E., & Soto, G. J. (2012). Pyroclastic flow hazard at Arenal volcano, Costa Rica: Scenarios and assessment. Journal of volcanology and geothermal research, 247, 74-92. https://doi.org/10.1016/j.jvolgeores.2012.07.015

Comparación a la misma escala de los mapas de restricción de uso del suelo en el Arenal (izquierda) y del mapa de peligros volcánicos a corto plazo (derecha). (2007)
Figure 3 in: Soto, G.J. & Sjöbohm, L. (2007). Los Peligros volcánicos del Arenal. En torno a la Prevencion. Revista No. 4, Junio 2007. Comisión Nacional de Prevención de Riesgos y Atención de Emergencias (CNE).

Mapa de peligros volcánicos del Arenal: escenario a corto plazo (2007)
Figure 1 in: Soto, G.J. & Sjöbohm, L. (2007). Los Peligros volcánicos del Arenal. En torno a la Prevencion. Revista No. 4, Junio 2007. Comisión Nacional de Prevención de Riesgos y Atención de Emergencias (CNE).

Mapas de peligro volcánico del Arenal: escenario a largo plazo (2007)
Figure 2 in: Soto, G.J. & Sjöbohm, L. (2007). Los Peligros volcánicos del Arenal. En torno a la Prevencion. Revista No. 4, Junio 2007. Comisión Nacional de Prevención de Riesgos y Atención de Emergencias (CNE).

Individual risk map for a generic full time resident (2006)
Figure 4 in: Meloy, A.F. (2006). Arenal-type pyroclastic flows: a probabilistic event tree risk analysis. Journal of Volcanology and Geothermal Research, 157(1-3), 121-134. https://doi.org/10.1016/j.jvolgeores.2006.03.048

Individual risk map for a generic tourist (2006)
Figure 6 in: Meloy, A. F. (2006). Arenal-type pyroclastic flows: a probabilistic event tree risk analysis. Journal of Volcanology and Geothermal Research, 157(1-3), 121-134. https://doi.org/10.1016/j.jvolgeores.2006.03.048

Individual risk map for a generic worker who works in the area but lives elsewhere (2006)
Figure 5 in: Meloy, A. F. (2006). Arenal-type pyroclastic flows: a probabilistic event tree risk analysis. Journal of Volcanology and Geothermal Research, 157(1-3), 121-134. https://doi.org/10.1016/j.jvolgeores.2006.03.048

Comparación entre el mapa de restricción de uso del suelo en el área de Arenal según la reglamentación de la CNE, con el escenario de peligros volcánicos a corto plazo. (2005)
Figure 11 in: Soto, G.J. & Sjöbohm, L. (2005). Sobre el mapeo de los peligros volcánicos del Arenal (Costa Rica) como una herramienta para la planificación del uso del suelo y la mitigación de desastres. Memoria VIII Seminario de Ingeniería Estructural y Sísmica, San José, Costa Rica, Septiembre 2005, 26 p.

Map of Volcanic Hazards of Arenal Volcano Costa Rica: A Tool to Plan the Use of Land and Mitigate Potential Disasters (2005)
Soto, G.J. & Sjöbohm, L. (2005). Map of Volcanic Hazards of Arenal Volcano Costa Rica: A Tool to Plan the Use of Land and Mitigate Potential Disasters. (Modified from: Soto, G.J. & Sjöbohm, L. (2005). Sobre el mapeo de los peligros volcánicos del Arenal (Costa Rica) como una herramienta para la planificación del uso del suelo y la mitigación de desastres. Memoria VIII Seminario de Ingeniería Estructural y Sísmica, San José, Costa Rica, Septiembre 2005, 26 p.)

Mapa de peligros volcánicos del Arenal, escenario a corto plazo (2005)
Figure 8 in: Soto, G.J. & Sjöbohm, L. (2005). Sobre el mapeo de los peligros volcánicos del Arenal (Costa Rica) como una herramienta para la planificación del uso del suelo y la mitigación de desastres. Memoria VIII Seminario de Ingeniería Estructural y Sísmica, San José, Costa Rica, Septiembre 2005, 26 p.

Mapa de peligros volcánicos del Arenal, escenario a largo plazo (2005)
Figure 9 in: Soto, G.J. & Sjöbohm, L. (2005). Sobre el mapeo de los peligros volcánicos del Arenal (Costa Rica) como una herramienta para la planificación del uso del suelo y la mitigación de desastres. Memoria VIII Seminario de Ingeniería Estructural y Sísmica, San José, Costa Rica, Septiembre 2005, 26 p.

Mapas temáticos de peligros volcánicos del Arenal (2005)
Figure 6 in: Soto, G.J. & Sjöbohm, L. (2005). Sobre el mapeo de los peligros volcánicos del Arenal (Costa Rica) como una herramienta para la planificación del uso del suelo y la mitigación de desastres. Memoria VIII Seminario de Ingeniería Estructural y Sísmica, San José, Costa Rica, Septiembre 2005, 26 p.

Planta Hidroeléctrica Arenal. Amenaza Volcánica Presa Sangregado. (2004)
Soto, G.J. (2004). Preparación del mapa de peligros volcánicos del Volcán Arenal y la implementación de las recomendaciones al mapa de restricción de uso del suelo en el Volcán Arenal. Reprinted in: Alvarado, G.E., Brenes-André, F., Núñez, D., Borbón, J., Ramírez, M.A., Alpízar, Y., Núñez, S., Sibaja, J.P., Esquivel, L. (2023). Actualización del Análisis del Peligro Volcánico del Arenal, Costa Rica. Instituto Costarricense de Electricidad (ICE). Mayo 2023.

Mapa de restricciones al uso del suelo y libre transito de personas, Volcán Arenal, Costa Rica (2003)
Berrocal, M., Malavassi, E. (2003). Mapa de restricciones al uso del suelo y libre transito de personas Volcan Arenal, Costa Rica. Observatorio Vulcanologico y Sismologico de Costa Rica Universidad Nacional, Laboratorio de Sistemas de Informacion Geografica (OVSICORI - UNA), mapa escala 1:25,000

Mapa de peligro potencial en el cual se sintetizan los efectos regionales por erupciones plinianas y subplinianas (1997)
Figure 2 in: Alvarado, G.E., Soto, G.J., Ghigliotti, M., & Frullani, A. (1997). Peligro volcánico del Arenal. Boletín OSIVAM, 8(15-16), p. 62-82.

Mapa de peligro volcánico potencial para erupciones estrombolianas violentas hasta freatomagmáticas (intermediate-term volcanic hazard) (1997)
Figure 4 in: Alvarado, G.E., Soto, G.J., Ghigliotti, M., & Frullani, A. (1997). Peligro volcánico del Arenal. Boletín OSIVAM, 8(15-16), p. 62-82.

Reconstrucción de la probable erupción máxima futura del Arenal (1997)
Figure 1 in: Alvarado, G.E., Soto, G.J., Ghigliotti, M., & Frullani, A. (1997). Peligro volcánico del Arenal. Boletín OSIVAM, 8(15-16), p. 62-82.

Reconstrucción del escenario eruptivo asociado con un evento tipo ET-1 (1997)
Figure 3 in: Alvarado, G.E., Soto, G.J., Ghigliotti, M., & Frullani, A. (1997). Peligro volcánico del Arenal. Boletín OSIVAM, 8(15-16), p. 62-82.

Sectorización de la peligrosidad del Arenal en las vecindades del mismo, derivado de la fig. 1 (1997)
Figure 5 in: Alvarado, G.E., Soto, G.J., Ghigliotti, M., & Frullani, A. (1997). Peligro volcánico del Arenal. Boletín OSIVAM, 8(15-16), p. 62-82.

Mapa de restricciones al uso del suelo y libre transito de personas, Volcán Arenal, Costa Rica ([?])
OVSICORI-UNA. (Year Unknown). Mapa de restricciones al uso del suelo y libre transito de personas, Volcán Arenal, Costa Rica. (Simplified from: Berrocal, M. and Malavassi, E. 2003)

Arintica, Chile [VNUM = 355814]

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Arjuno-Welirang, Indonesia [VNUM = 263290]

Volcanic Hazard Map of Arjuno Welirang Volcano, East Java Province (2008)
Surmayadi, M., Sumpena, A.D., Riyadi, & Dahlan, A. (2008). Volcanic Hazard Map of Arjuno Welirang Volcano, East Java Province. Center for Volcanology and Geological Hazard Mitigation (CVGHM).

Asacha, Russia [VNUM = 300058]

Scheme of volcano-geographical zoning in Kamchatka (1962)
Figure 2 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Asamayama, Japan [VNUM = 283110]

Evacuation facilities (2019)
Asamayama Volcanic Disaster Prevention Committee. (2019). Asamayama Volcanic Disaster Prevention Map. Tsumagoi Village.

Hazard map of large-scale eruption (2019)
Asamayama Volcanic Disaster Prevention Committee. (2019). Asamayama Volcanic Disaster Prevention Map. Tsumagoi Village.

Hazard map of small to medium-scale eruptions (snow season) (2019)
Asamayama Volcanic Disaster Prevention Committee. (2019). Asamayama Volcanic Disaster Prevention Map. Tsumagoi Village.

Hazard map of small to medium-scale eruptions (snowless period) (2019)
Asamayama Volcanic Disaster Prevention Committee. (2019). Asamayama Volcanic Disaster Prevention Map. Tsumagoi Village.

Asamayama Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Asamayama Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Askja, Iceland [VNUM = 373060]

Areas closed to traffic and hazard areas after the volcanic eruption in Holuhraun and earthquakes in Bárðarbunga in Iceland (2015)
National Commisioner of the Icelandic Police. (2015). Press Release 16.03.2015 10:00 Regarding: Reduction of the access controlled area north of Vatnajökull.

Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun (2015)
Iceland Meteorological Office (IMO). (2015). Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun [Volcanic Eruption at Holuhraun 2014-2015 Probability of SO2 Contamination]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun (2015)
Iceland Meteorological Office (IMO). (2015). Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun [Volcanic Eruption at Holuhraun 2014-2015 Probability of SO2 Contamination]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu 13.02.2015 (2015)
Almannavarnir. (2015). Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu. 13.02.2015

Á litaða svæðinu eru líkur á gasmengun frá eldgosinu. Fim 18 Sep. (2014)
Iceland Meteorological Office (IMO). (2014). Á litaða svæðinu eru líkur á gasmengun frá eldgosinu. Fim 18 Sep.

Ástand fjallvega (2014)
Icelandic Road and Coastal Administration. (2014). Condition of mountain tracks. Map no. 30, valid from 25 August 2014.

Ástand fjallvega (2014)
Icelandic Road and Coastal Administration. (2014). Condition of mountain tracks. Map no. 31, valid from 2 September 2014.

Atmospheric dispersion of tephra for a threshold of 2 mg m−3 for all FL for the eruption scenarios of Hekla ERS 1947-type (a, b, c), Katla LLERS (d, e, f) and Askja OES 1875-type (g, h, i) (2014)
Figure 13 in: Biass, S., Scaini, C., Bonadonna, C., Folch, A., Smith, K., & Höskuldsson, A. (2014). A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes–Part 1: Hazard assessment. Natural hazards and earth system sciences, 14(8), 2265-2287. https://doi.org/10.5194/nhess-14-2265-2014

Bláa svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir daginn í dag lau 20 Sep (2014)
Iceland Meteorological Office (IMO). (2014). Bláa svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir daginn í dag lau 20 Sep

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fim 30 okt (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fim 30 okt

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fös 12 des (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fös 12 des

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mán 27 okt (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mán 27 okt

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 15 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 15 okt.

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 22 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 22 okt.

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið þri 21 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið þri 21 okt.

Bleika svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir morgundaginn Sun 21 Sep (2014)
Iceland Meteorological Office (IMO). (2014). Bleika svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir morgundaginn Sun 21 Sep

Dæmi um verulegt sprengigos í Dyngjujökli, jafnþykktarlínur gjóskufalls (2014)
Kort Jarðvísindastofnun HÍ. (2014). Dæmi um verulegt sprengigos í Dyngjujökli, jafnþykktarlínur gjóskufalls.

Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar m.v. 50% líkur á styrk umfram þröskuldsgildi (2014)
Iceland Meteorological Office (IMO). (2014). Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar [Volcanic Eruption at Holuhraun 2014 Hazardous Area SO2 pollution]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar m.v. 90% líkur á styrk umfram þröskuldsgildi (2014)
Iceland Meteorological Office (IMO). (2014). Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar [Volcanic Eruption at Holuhraun 2014 Hazardous Area SO2 pollution]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Expected impacts of tephra dispersal on European airspace sectors (2014)
Figure 11 in: Scaini, C., Biass, S., Galderisi, A., Bonadonna, C., Folch, A., Smith, K., & Höskuldsson, A. (2014). A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes–Part 2: Vulnerability and impact. Natural hazards and earth system sciences, 14(8), 2289–2312. https://doi.org/10.5194/nhess-14-2289-2014

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 23 Okt 18:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 23 Okt 18:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 30 Okt 15:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 30 Okt 15:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 00:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 00:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 13:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 13:00

Jökulsá á Fjöllum Preliminary Flood Risk Assessment (2014)
Iceland Meteorological Office (IMO). (2014). Jökulsá á Fjöllum Preliminary Flood Risk Assessment.

Litaða svæðið sýnir líklega gasmengun á morgun, fimmtudaginn 18. september (2014)
Iceland Meteorological Office (IMO). (2014). Litaða svæðið sýnir líklega gasmengun á morgun, fimmtudaginn 18. september.

Litaða svæðið sýnir líklega gasmengun í miðvikudaginn 17. september (2014)
Iceland Meteorological Office (IMO). (2014). Litaða svæðið sýnir líklega gasmengun í miðvikudaginn 17. september.

Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu 17.10.2014 (2014)
Almannavarnir. (2014). Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu. 17.10.2014

Probability maps (%) for ground accumulation associated with a multi-phase 1875-type eruption at Askja volcano (2014)
Figure 11 in: Biass, S., Scaini, C., Bonadonna, C., Folch, A., Smith, K., & Höskuldsson, A. (2014). A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes–Part 1: Hazard assessment. Natural hazards and earth system sciences, 14(8), 2265-2287. https://doi.org/10.5194/nhess-14-2265-2014

Asosan, Japan [VNUM = 282110]

Asosan Volcanic Alert Levels (2019)
Japan Meteorological Agency. (2019). Asosan Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Volcanic disaster prevention map of Asosan volcano (2008)
Kumamoto Prefecture, Aso City, Takamori Town, Minami Aso Village. (2008). Volcanic disaster prevention map of Asosan volcano.

Atacazo, Ecuador [VNUM = 352021]

Mapa de los Peligros Volcánicos Potenciales Asociados con el Volcán Ninahuilca (1992)
Hall, M.L. & Maruri, W.R. (1992). Mapa de los Peligros Volcánicos Potenciales Asociados con el Volcán Ninahuilca. Instituto Geofisico de la Escuela Politecnica Nacional (IG-EPN), mapa escala 1:50.000. Quito.

Atitlán, Guatemala [VNUM = 342060]

Hypothetical Tephra-fall Deposits (2005)
Plate 2 in: Haapala, J. M., Escobar Wolf, R., Vallance, J. W., Rose, W. I., Griswold, J. P., Schilling, S. P., Ewert, J.W., & Mota, M. (2005). Volcanic hazards at Atitlan volcano, Guatemala. U.S. Geological Survey, Open-File Report, 1403. https://doi.org/10.3133/ofr20051403

Volcanic Hazard Zones for Atitlán Volcano, Guatemala (2005)
Plate 1 in: Haapala, J. M., Escobar Wolf, R., Vallance, J. W., Rose, W. I., Griswold, J. P., Schilling, S. P., Ewert, J.W., & Mota, M. (2005). Volcanic hazards at Atitlan volcano, Guatemala. U.S. Geological Survey, Open-File Report, 1403. https://doi.org/10.3133/ofr20051403

Atosanupuri (Etorofu-Atosanupuri [Atosanupuri]), Japan [VNUM = 290050]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Atosanupuri (Kussharo), Japan [VNUM = 285080]

Atosanupuri Hazard map (magma eruption) (2018)
Page 7 in: Teshikaga Town Office. (2018). Teshikaga Town Disaster Prevention Guidebook.

Atosanupuri Hazard Map (steam eruption) (2018)
Page 6 in: Teshikaga Town Office. (2018). Teshikaga Town Disaster Prevention Guidebook.

Atosanupuri Volcanic Alert Levels (2018)
Japan Meteorological Agency. (2018). Atosanupuri Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Volcanic disaster prevention map of Atosanupuri volcano (2001)
Teshikaga Town. (2001). Volcanic Disaster Prevention Map of Atosanupuri Volcano.

Aucanquilcha, Chile [VNUM = 355823]

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Auckland Volcanic Field, New Zealand [VNUM = 241020]

Spatial Probability Map for Scenarios A and B (Phreatomagmatic Eruption and Phreatomagmatic to Magmatic Transition Eruption, respectively) (2020)
Figure 3 in: Ang, P. S., Bebbington, M. S., Lindsay, J. M., & Jenkins, S. F. (2020). From eruption scenarios to probabilistic volcanic hazard analysis: An example of the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 397, 106871. https://doi.org/10.1016/j.jvolgeores.2020.106871

Spatial Probability Map for Scenarios C and G. (2020)
Figure 5 in: Ang, P. S., Bebbington, M. S., Lindsay, J. M., & Jenkins, S. F. (2020). From eruption scenarios to probabilistic volcanic hazard analysis: An example of the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 397, 106871. https://doi.org/10.1016/j.jvolgeores.2020.106871

Spatial Probability Map for Scenarios D and E. (2020)
Figure 4 in: Ang, P. S., Bebbington, M. S., Lindsay, J. M., & Jenkins, S. F. (2020). From eruption scenarios to probabilistic volcanic hazard analysis: An example of the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 397, 106871. https://doi.org/10.1016/j.jvolgeores.2020.106871

Auckland's Hazard Viewer Volcanic Activity (2015)
Auckland Council. Auckland's Hazard Viewer: Volcanic Activity.

Time sequence progression of the vent uncertainty area as the magma rises to the surface (2015)
Figure 3 in: Auckland Council (2015). Auckland Volcanic Field Contingency Plan March 2015. Civil Defence and Emergency Management. Auckland. 50 p.

Lava flow susceptibility map based on Scenario 1 (without Rangitoto) for the City of Auckland showing the susceptibility zones with the major hydrological and topographical characteristics and with major infrastructures (2012)
Figure 9 in: Kereszturi, G., Procter, J., Cronin, S. J., Németh, K., Bebbington, M., & Lindsay, J. (2012). LiDAR-based quantification of lava flow susceptibility in the City of Auckland (New Zealand). Remote Sensing of Environment, 125, 198-213. https://doi.org/10.1016/j.rse.2012.07.015

Kernel-smoothed estimate of the spatial intensity of eruption sites in the AVF (2011)
Figure 11 in: Bebbington, M.S. & Cronin, S.J. (2011). Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bulletin of Volcanology, 73(1), 55-72. https://doi.org/10.1007/s00445-010-0403-6

Augustine, United States [VNUM = 313010]

Area likely to be affected by pyroclastic flow from a typical Augustine eruption (1998)
Figure 13 in: Waythomas, C.F. & Waitt, R. (1998). Preliminary volcano-hazard assessment for Augustine Volcano, Alaska. U.S. Geological Survey, Open-File Report 98-106. https://doi.org/10.3133/ofr98106

Generalized flow paths and names of major debris avalanche deposits on Augustine Island (1998)
Figure 15 in: Waythomas, C.F. & Waitt, R. (1998). Preliminary volcano-hazard assessment for Augustine Volcano, Alaska. U.S. Geological Survey, Open-File Report 98-106. https://doi.org/10.3133/ofr98106

Maximum extent of pyroclastic flows and surges during a very large, rare eruption (1998)
Figure 14 in: Waythomas, C.F. & Waitt, R. (1998). Preliminary volcano-hazard assessment for Augustine Volcano, Alaska. U.S. Geological Survey, Open-File Report 98-106. https://doi.org/10.3133/ofr98106

Preliminary Volcano-Hazard Assessment for Augustine Volcano, Alaska (1998)
Plate 1 in: Waythomas, C.F. & Waitt, R. (1998). Preliminary volcano-hazard assessment for Augustine Volcano, Alaska. U.S. Geological Survey, Open-File Report 98-106. https://doi.org/10.3133/ofr98106

Avachinsky, Russia [VNUM = 300100]

Potential Hazards from future eruptions of Avachinsky volcano (2001)
Bazanova, L.I., Braitseva, O.A., Melekestsev, I.V., & Puzankov, M.Yu. (2001). Potential Hazards from future eruptions of Avachinsky volcano. Institute of Volcanic Geology and Geochemistry FED RAS.

Scheme of volcano-geographical zoning in Kamchatka (1962)
Figure 2 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Awu, Indonesia [VNUM = 267040]

Volcanic Hazard Map of Awu Volcano, North Sulawesi Province (2016)
Kriswati, E., Primulyana, S., & Dirasutisna S. (2016). Volcanic Hazard Map of Awu Volcano, North Sulawesi Province. Center for Volcanology and Geological Hazard Mitigation (CVGHM).

Volcanic Hazard Map of Awu Volcano, North Sulawesi Province (1996)
Dirasutisna, S., Martono, A., Hadisantono, R.D., Pardyanto, L., Effendi, A.C., & Modjo, W.S. (1996). Volcanic Hazard Map of Awu Volcano, North Sulawesi Province. Volcanological Survey of Indonesia (VSI).

Azumayama, Japan [VNUM = 283180]

Azumayama Volcanic Alert Levels (2019)
Japan Meteorological Agency. (2019). Azumayama Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Evacuation direction at the time of eruption of Mount Azuma (Oana Crater) (2019)
Azumayama Volcanic Disaster Management Council. (2019). Evacuation direction at the time of eruption of Munt Azuma (Oana Crater).

Mt. Azuma Evacuation Routes Around the Crater Area (2019)
Azumayama Volcanic Disaster Management Council. (2019). Mt. Azuma Evacuation Routes Around the Crater Area.

Mt. Azuma Evacuation Routes Around the Crater Area [Chinese version] (2019)
Azumayama Volcanic Disaster Management Council. (2019). Mt. Azuma Evacuation Routes Around the Crater Area.

Mt. Azuma Evacuation Routes Around the Crater Area [English version] (2019)
Azumayama Volcanic Disaster Management Council. (2019). Mt. Azuma Evacuation Routes Around the Crater Area.

Mt. Azuma Evacuation Routes Around the Crater Area [Korean version] (2019)
Azumayama Volcanic Disaster Management Council. (2019). Mt. Azuma Evacuation Routes Around the Crater Area.

Volcanic disaster prevention map of Azumayama volcano (2019)
Volcano Disaster Management Councils of Azumayama. (2019). Volcano Disaster Prevention Map. Fukushima City, Inawashiro City, Yonezawa City.

Cerro Aspero (Purico Complex), Chile [VNUM = 355094]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Cerro Azul, Chile [VNUM = 357060]

Peligros Volcanicos del Volcán Cerro Azul-Quizapu (2015)
Amigo, A. & Bertin, D. (2015). Peligros del volcán Cerro Azul – Quizapu, Región del Maule. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carta Geológica de Chile, Serie Geología Ambiental, No. 17, p., 1, mapa escala 1:50.000. Santiago.

Peligros Volcánicos del Volcán Cerro Azul-Quizapu (2012)
Amigo, A., Bertin, D., & Orozco, G. (2012). Mapa Preliminar de Peligros Volcanicos Volcan Cerro Azul - Quizapu, Región del Maule. Informe inédito, Subdirección Nacional de Geología, Programa de Riesgo Volcánico, mapa escala 1:100.000. Santiago.

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Cerro del Azufre, Chile [VNUM = 355061]

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Morne Anglais (Morne Watt), Dominica [VNUM = 360101]

Dominica - Integrated Volcanic Hazard Zones for a combination of six most-likely scenarios (2005)
Pocket insert in: Lindsay, J.M., Smith, A.L., Roobol, M.J., & Stasiuk, M.V. (2005). Dominica. Volcanic hazard atlas of the Lesser Antilles. In: Lindsay, J.M., Shepherd, J.B., Robertson, R.E.A., & Ali, S. (Eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, W.I. p. 2-47

Integrated volcanic hazard zones for scenario 3: Explosive eruption from Morne Anglais (2005)
Page 28 in: Lindsay, J.M., Smith, A.L., Roobol, M.J., & Stasiuk, M.V. (2005). Dominica. Volcanic hazard atlas of the Lesser Antilles. In: Lindsay, J.M., Shepherd, J.B., Robertson, R.E.A., & Ali, S. (Eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, W.I. p. 2-47

Overall Integrated volcanic hazard zones for Dominica based on a combination of the 6 most-likely scenarios (2005)
Page 43 in: Lindsay, J.M., Smith, A.L., Roobol, M.J., & Stasiuk, M.V. (2005). Dominica. Volcanic hazard atlas of the Lesser Antilles. In: Lindsay, J.M., Shepherd, J.B., Robertson, R.E.A., & Ali, S. (Eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, W.I.

Volcanic hazard map for Scenario 3: Explosive eruption from Morne Anglais (2005)
Page 27 in: Lindsay, J.M., Smith, A.L., Roobol, M.J., & Stasiuk, M.V. (2005). Dominica. Volcanic hazard atlas of the Lesser Antilles. In: Lindsay, J.M., Shepherd, J.B., Robertson, R.E.A., & Ali, S. (Eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, W.I. p. 2-47

Negros de Aras, Chile [VNUM = 355106]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Vega de Arizaro, Argentina

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439