Browse Maps By Country

Select the first letter of country.
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Showing 3 countries

New Zealand

Auckland Volcanic Field; New Zealand (2020)
Spatial Probability Map for Scenarios A and B (Phreatomagmatic Eruption and Phreatomagmatic to Magmatic Transition Eruption, respectively)
Figure 3 in: Ang, P. S., Bebbington, M. S., Lindsay, J. M., & Jenkins, S. F. (2020). From eruption scenarios to probabilistic volcanic hazard analysis: An example of the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 397, 106871. https://doi.org/10.1016/j.jvolgeores.2020.106871

Auckland Volcanic Field; New Zealand (2020)
Spatial Probability Map for Scenarios C and G.
Figure 5 in: Ang, P. S., Bebbington, M. S., Lindsay, J. M., & Jenkins, S. F. (2020). From eruption scenarios to probabilistic volcanic hazard analysis: An example of the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 397, 106871. https://doi.org/10.1016/j.jvolgeores.2020.106871

Auckland Volcanic Field; New Zealand (2020)
Spatial Probability Map for Scenarios D and E.
Figure 4 in: Ang, P. S., Bebbington, M. S., Lindsay, J. M., & Jenkins, S. F. (2020). From eruption scenarios to probabilistic volcanic hazard analysis: An example of the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 397, 106871. https://doi.org/10.1016/j.jvolgeores.2020.106871

Auckland Volcanic Field; New Zealand (2015)
Auckland's Hazard Viewer Volcanic Activity
Auckland Council. Auckland's Hazard Viewer: Volcanic Activity.

Auckland Volcanic Field; New Zealand (2015)
Time sequence progression of the vent uncertainty area as the magma rises to the surface
Figure 3 in: Auckland Council (2015). Auckland Volcanic Field Contingency Plan March 2015. Civil Defence and Emergency Management. Auckland. 50 p.

Auckland Volcanic Field; New Zealand (2012)
Lava flow susceptibility map based on Scenario 1 (without Rangitoto) for the City of Auckland showing the susceptibility zones with the major hydrological and topographical characteristics and with major infrastructures
Figure 9 in: Kereszturi, G., Procter, J., Cronin, S. J., Németh, K., Bebbington, M., & Lindsay, J. (2012). LiDAR-based quantification of lava flow susceptibility in the City of Auckland (New Zealand). Remote Sensing of Environment, 125, 198-213. https://doi.org/10.1016/j.rse.2012.07.015

Auckland Volcanic Field; New Zealand (2011)
Kernel-smoothed estimate of the spatial intensity of eruption sites in the AVF
Figure 11 in: Bebbington, M.S. & Cronin, S.J. (2011). Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bulletin of Volcanology, 73(1), 55-72. https://doi.org/10.1007/s00445-010-0403-6

Egmont (Taranaki); New Zealand (1993)
Tephra Hazard Zone Map - hazard zones A, B, C, and D in the North Island from future eruptions of Egmont Volcano
Map 5, Page 27 in: Neall, V.E. & Alloway, B.V. (1993). Volcanic hazards at Egmont volcano. Volcanic Hazards Working Group of the Scientific Advisory Committee, Ministry of Civil Defence. Volcanic Hazards Information Series, Number One, 2nd ed. 31 p.

Egmont (Taranaki); New Zealand (1985)
Risk zones for future ground-hugging volcanic hazards at Mt. Egmont.
Figure 11 in: Dibble, R.R., Nairn, I.A., & Neall, V.E. (1985). Volcanic hazards of North Island, New Zealand--Overview. Journal of Geodynamics, 3, p. 369-396. https://doi.org/10.1016/0264-3707(85)90043-2

Haroharo (Okataina); New Zealand (2017)
Maps showing the average risk index (here, probability of accumulating ≥10 mm of ash × a Vc of 1.0) in the event of an initial Plinian phase of a rhyolitic Plinian eruption during peak season from the Tarawera LVZ for a fruit farms in the BoP
Figure 8 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7

Haroharo (Okataina); New Zealand (2015)
BET_VH Node 8 maps showing the average conditional probability of accumulating ≥10 kg m−2 tephra given a single Plinian phase resulting from a a basaltic eruption from within the Tarawera LVZ; b a rhyolitic eruption from within the Tarawera LVZ; d a basaltic eruption from within the Haroharo LVZ; e a rhyolitic eruption from within the Haroharo LVZ; e a basaltic eruption from Ruawahia Dome, a single vent within the Tarawera LVZ (see star in Fig. 4); and f a rhyolitic eruption from Ruawahia Dome
Figure 8 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Haroharo (Okataina); New Zealand (2015)
BET_VH Node 8 outputs showing the average absolute probability of accumulating ≥10 kg m−2 of tephra in the next 1 year from a single Plinian phase resulting from a a basaltic eruption and b a rhyolitic eruption, from somewhere within the Tarawera LVZ
Figure 5 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Haroharo (Okataina); New Zealand (2010)
Volcanic hazard map of the Okataina Volcanic Centre
Figure 8 in: Becker, J.S., Saunders, W.S.A., Robertson, C.M., Leonard, G.S., & Johnston, D.M. (2010). A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. The Australasian Journal of Disaster and Trauma Studies, 2010-1. (Simplified from: Nairn, 2002)

Haroharo (Okataina); New Zealand (1993)
Hazard zones defined at Okataina Volcanic Centre based on the effects of past eruptions
Figure 10 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology

Mayor Island; New Zealand (2006)
Mean simulated tephra thickness within the Auckland Region
Figure 6 in: Magill, C. R., Hurst, A. W., Hunter, L. J., & Blong, R. J. (2006). Probabilistic tephra fall simulation for the Auckland Region, New Zealand. Journal of volcanology and geothermal research, 153(3-4), 370-386. https://doi.org/10.1016/j.jvolgeores.2005.12.002

Mount Edgecumbe (Okataina); New Zealand (2010)
Volcanic hazard map of the Okataina Volcanic Centre
Figure 8 in: Becker, J.S., Saunders, W.S.A., Robertson, C.M., Leonard, G.S., & Johnston, D.M. (2010). A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. The Australasian Journal of Disaster and Trauma Studies, 2010-1. (Simplified from: Nairn, 2002)

Mount Edgecumbe (Okataina); New Zealand (1993)
Hazard zones defined at Okataina Volcanic Centre based on the effects of past eruptions
Figure 10 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology

Okataina; New Zealand (2017)
Map showing the average probability of accumulating C10 mm of ash from the initial Plinian phase of either a rhyolitic or basaltic Plinian eruption from anywhere within the OVC over the next 1 year
Figure 5 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7

Okataina; New Zealand (2017)
Map showing the average probability of accumulating ≥100 mm of ash from the initial Plinian phase of either a rhyolitic or basaltic Plinian eruption from anywhere within the OVC over the next one year
Figure 4 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7

Okataina; New Zealand (2017)
Maps showing the average probability of accumulating ≥10 mm of ash in the event of a–c a basaltic Plinian eruption from Ruawahia Dome, a vent in the Tarawera LVZ, and d–f an initial Plinian phase of a rhyolitic Plinian eruption from Ruawahia Dome, for fruit farms in the BoP
Figure 9 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7

Okataina; New Zealand (2017)
Maps showing the average risk index (here, probability of accumulating ≥10 mm of ash × a Vc of 1.0) in the event of an initial Plinian phase of a rhyolitic Plinian eruption during peak season from the Tarawera LVZ for a fruit farms in the BoP
Figure 8 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7

Okataina; New Zealand (2015)
BET_VH Node 8 maps showing the average absolute probability of accumulating ≥10 km m−2 of tephra in the next 1 year from a single Plinian phase resulting from a a basaltic eruption from within the OVC, b a rhyolitic eruption from within the OVC and c either a basaltic or rhyolitic eruption from within the OVC
Figure 7 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Okataina; New Zealand (2015)
BET_VH Node 8 maps showing the average conditional probability of accumulating ≥10 kg m−2 tephra given a single Plinian phase resulting from a a basaltic eruption from within the Tarawera LVZ; b a rhyolitic eruption from within the Tarawera LVZ; d a basaltic eruption from within the Haroharo LVZ; e a rhyolitic eruption from within the Haroharo LVZ; e a basaltic eruption from Ruawahia Dome, a single vent within the Tarawera LVZ (see star in Fig. 4); and f a rhyolitic eruption from Ruawahia Dome
Figure 8 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Okataina; New Zealand (2015)
BET_VH Node 8 outputs showing the average absolute probability of accumulating ≥10 kg m−2 of tephra in the next 1 year from a single Plinian phase resulting from a a basaltic eruption and b a rhyolitic eruption, from somewhere within the Tarawera LVZ
Figure 5 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Okataina; New Zealand (2010)
Ash thickness (in metres) from our model for 1 Ma of eruptions from Taupo and Okataina centres
Figure 9 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129

Okataina; New Zealand (2010)
Volcanic ash hazard map (contours in mm) for 500 yr return period and volcanic ash hazard map (contours in mm) for 10,000 yr return period
Figure 8 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129

Okataina; New Zealand (2010)
Volcanic hazard map of the Okataina Volcanic Centre
Figure 8 in: Becker, J.S., Saunders, W.S.A., Robertson, C.M., Leonard, G.S., & Johnston, D.M. (2010). A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. The Australasian Journal of Disaster and Trauma Studies, 2010-1. (Simplified from: Nairn, 2002)

Okataina; New Zealand (2006)
Mean simulated tephra thickness within the Auckland Region
Figure 6 in: Magill, C. R., Hurst, A. W., Hunter, L. J., & Blong, R. J. (2006). Probabilistic tephra fall simulation for the Auckland Region, New Zealand. Journal of volcanology and geothermal research, 153(3-4), 370-386. https://doi.org/10.1016/j.jvolgeores.2005.12.002

Okataina; New Zealand (1993)
A map of the possible distribution of a future rhyolite pyroclastic fall deposit from the Okataina Centre, based on past eruption deposits
Figure 11 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology

Okataina; New Zealand (1993)
Hazard zones defined at Okataina Volcanic Centre based on the effects of past eruptions
Figure 10 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology

Okataina; New Zealand (1985)
Map of the central and eastern area of the North Island of New Zealand, showing (heavy lines) zones of percentage risk of tephra fall exceeding 0.3 m in any 100 year period
Figure 6 in: Dibble, R.R., Nairn, I.A., & Neall, V.E. (1985). Volcanic hazards of North Island, New Zealand--Overview. Journal of Geodynamics, 3, p. 369-396. https://doi.org/10.1016/0264-3707(85)90043-2

Ruapehu; New Zealand (2022)
Volcanic Hazards on Mt. Ruapehu - VAL 2
GNS Science (compiler). (2022). Volcanic Hazards on Mt. Ruapehu - VAL 2. Version 7-VAL2A 2022

Ruapehu; New Zealand (2021)
Volcanic Eruption Hazards on Mt. Ruapehu
GNS Science (compiler). (2021). Volcanic Eruption Hazards on Mt. Ruapehu. Version 7.0 2021.

Ruapehu; New Zealand (2020)
Area closed. Do not enter. Increased risk of eruption.
Department of Conservation. (2020). Area closed. Do not enter. Increased risk of eruption. December 2020 R183230.

Ruapehu; New Zealand (2020)
Map of areas not recommended not to enter or camp - Ruapehu Volcanic Risk
Department of Conservation. (2020). Map of areas not recommended not to enter or camp - Ruapehu Volcanic Risk. September 2020 R183230.

Ruapehu; New Zealand (2020)
Volcanic Hazards at Tūroa Mt. Ruapehu
GNS Science (compiler). (2020). Volcanic Hazards at Tūroa Mt. Ruapehu. Version 7.0 2020.

Ruapehu; New Zealand (2020)
Volcanic Hazards at Whakapapa Mt. Ruapehu
GNS Science (compiler). (2020). Volcanic Hazards at Whakapapa Mt. Ruapehu. Version 7.0 2020.

Ruapehu; New Zealand (2019)
Volcanic Hazards at Tūroa Mt. Ruapehu
GNS Science (compiler). (2019). Volcanic Hazards at Tūroa Mt. Ruapehu. Version 6.0 2019.

Ruapehu; New Zealand (2019)
Volcanic Hazards at Whakapapa Mt. Ruapehu
GNS Science (compiler). (2019). Volcanic Hazards at Whakapapa Mt. Ruapehu. Version 6.0 2019.

Ruapehu; New Zealand (2017)
Absolute probability for areas to be affected by a ballistic impact density >0.001
Figure 12 in: Strehlow, K., Sandri, L., Gottsmann, J. H., Kilgour, G., Rust, A. C., & Tonini, R. (2017). Phreatic eruptions at crater lakes: occurrence statistics and probabilistic hazard forecast. Journal of Applied Volcanology, 6(1), 4. https://doi.org/10.1186/s13617-016-0053-2

Ruapehu; New Zealand (2017)
Hazard map (average) at a probability of 1%
Figure 10 in: Strehlow, K., Sandri, L., Gottsmann, J. H., Kilgour, G., Rust, A. C., & Tonini, R. (2017). Phreatic eruptions at crater lakes: occurrence statistics and probabilistic hazard forecast. Journal of Applied Volcanology, 6(1), 4. https://doi.org/10.1186/s13617-016-0053-2

Ruapehu; New Zealand (2017)
Hazard map (average) at a probability of 1% conditional to an eruption
Figure 9 in: Strehlow, K., Sandri, L., Gottsmann, J. H., Kilgour, G., Rust, A. C., & Tonini, R. (2017). Phreatic eruptions at crater lakes: occurrence statistics and probabilistic hazard forecast. Journal of Applied Volcanology, 6(1), 4. https://doi.org/10.1186/s13617-016-0053-2

Ruapehu; New Zealand (2017)
Probability for areas to experience a ballistic impact density >0.01, conditional to an eruption
Figure 11 in: Strehlow, K., Sandri, L., Gottsmann, J. H., Kilgour, G., Rust, A. C., & Tonini, R. (2017). Phreatic eruptions at crater lakes: occurrence statistics and probabilistic hazard forecast. Journal of Applied Volcanology, 6(1), 4. https://doi.org/10.1186/s13617-016-0053-2

Ruapehu; New Zealand (2010)
Volcanic ash hazard map (contours in mm) for 500 yr return period and volcanic ash hazard map (contours in mm) for 10,000 yr return period
Figure 8 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129

Ruapehu; New Zealand (2008)
Eruption Hazards at Mt. Ruapehu
GNS Science (compiler). (2008). Eruption Hazards at Mt. Ruapehu.

Ruapehu; New Zealand (2007)
Eruption Hazards at Mt. Ruapehu
GNS Science (compiler). (2007). Eruption Hazards at Mt. Ruapehu. 8 October 2007.

Ruapehu; New Zealand (2005)
Volcanic Hazards at Tūroa Mt. Ruapehu
GNS Science (compiler). (2005). Volcanic Hazards at Tūroa Mt. Ruapehu.

Ruapehu; New Zealand (2004)
Volcanic Hazards at Whakapapa Mt. Ruapehu
GNS Science (compiler). (2004). Volcanic Hazards at Whakapapa Mt. Ruapehu.

Ruapehu; New Zealand (1987)
Principal lahar paths at Ruapehu volcano and source areas for the lahars.
Figure 7 in: Houghton, B.F., Latter, J.H., & Hackett, W.R. (1987). Volcanic hazard assessment for Ruapehu composite volcano, Taupo volcanic zone, New Zealand. Bulletin of volcanology, 49(6), p. 737-751. https://doi.org/10.1007/BF01079825

Ruapehu; New Zealand (1987)
Zones of risk associated with phreatomagmatic eruptions of 100-year return periods, extrapolated from historical records.
Figure 11 in: Houghton, B. F., Latter, J. H., & Hackett, W. R. (1987). Volcanic hazard assessment for Ruapehu composite volcano, Taupo volcanic zone, New Zealand. Bulletin of volcanology, 49(6), p. 737-751. https://doi.org/10.1007/BF01079825

Ruapehu; New Zealand (1987)
Zones of volcanic risk associated with phreatomagmatic eruptions of 10-30-year return period interpolated from historical records.
Figure 10 in: Houghton, B. F., Latter, J. H., & Hackett, W. R. (1987). Volcanic hazard assessment for Ruapehu composite volcano, Taupo volcanic zone, New Zealand. Bulletin of volcanology, 49(6), p. 737-751. https://doi.org/10.1007/BF01079825

Ruapehu; New Zealand (1987)
Zones of volcanic risk associated with phreatomagmatic eruptions of return period 1-3 years interpolated from the historical record.
Figure 9 in: Houghton, B. F., Latter, J. H., & Hackett, W. R. (1987). Volcanic hazard assessment for Ruapehu composite volcano, Taupo volcanic zone, New Zealand. Bulletin of volcanology, 49(6), p. 737-751. https://doi.org/10.1007/BF01079825

Ruapehu; New Zealand (No date)
Lahar Warning Whakapapa Village
Department of Conservation. Lahar Warning Whakapapa Village.

Ruawahia (Okataina); New Zealand (2017)
Maps showing the average probability of accumulating ≥10 mm of ash in the event of a–c a basaltic Plinian eruption from Ruawahia Dome, a vent in the Tarawera LVZ, and d–f an initial Plinian phase of a rhyolitic Plinian eruption from Ruawahia Dome, for fruit farms in the BoP
Figure 9 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7

Ruawahia (Okataina); New Zealand (2015)
BET_VH Node 8 maps showing the average conditional probability of accumulating ≥10 kg m−2 tephra given a single Plinian phase resulting from a a basaltic eruption from within the Tarawera LVZ; b a rhyolitic eruption from within the Tarawera LVZ; d a basaltic eruption from within the Haroharo LVZ; e a rhyolitic eruption from within the Haroharo LVZ; e a basaltic eruption from Ruawahia Dome, a single vent within the Tarawera LVZ (see star in Fig. 4); and f a rhyolitic eruption from Ruawahia Dome
Figure 8 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Ruawahia (Okataina); New Zealand (2015)
BET_VH Node 8 outputs showing the average absolute probability of accumulating ≥10 kg m−2 of tephra in the next 1 year from a single Plinian phase resulting from a a basaltic eruption and b a rhyolitic eruption, from somewhere within the Tarawera LVZ
Figure 5 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Taranaki; New Zealand (2022)
Count of ballistic particle impacts per 10,000 ballistic particles with a diameter of 256 mm
Figure 8 in: Mead, S., Procter, J., Bebbington, M., & Rodriguez-Gomez, C. (2022). Probabilistic Volcanic Hazard Assessment for National Park Infrastructure Proximal to Taranaki Volcano (New Zealand). Frontiers in Earth Science, 435. https://doi.org/10.3389/feart.2022.832531

Taranaki; New Zealand (2022)
Exceedance probability for volcanic mass flows reaching or travelling further than Taranaki crossing track following a VEI≤2 eruption
Figure 7 in: Mead, S., Procter, J., Bebbington, M., & Rodriguez-Gomez, C. (2022). Probabilistic Volcanic Hazard Assessment for National Park Infrastructure Proximal to Taranaki Volcano (New Zealand). Frontiers in Earth Science, 435. https://doi.org/10.3389/feart.2022.832531

Taranaki; New Zealand (2022)
Minimum factor of safety for Mt. Taranaki edifice
Figure 9 in: Mead, S., Procter, J., Bebbington, M., & Rodriguez-Gomez, C. (2022). Probabilistic Volcanic Hazard Assessment for National Park Infrastructure Proximal to Taranaki Volcano (New Zealand). Frontiers in Earth Science, 435. https://doi.org/10.3389/feart.2022.832531

Taranaki; New Zealand (2022)
Potential failure volumes for FOS <3.0 at Mt. Taranaki
Figure 10 in: Mead, S., Procter, J., Bebbington, M., & Rodriguez-Gomez, C. (2022). Probabilistic Volcanic Hazard Assessment for National Park Infrastructure Proximal to Taranaki Volcano (New Zealand). Frontiers in Earth Science, 435. https://doi.org/10.3389/feart.2022.832531

Taranaki; New Zealand (2022)
Taranaki Maunga Ashfall from Taranaki
Taranaki Emergency Management. (2022). Taranaki Maunga. Ashfall from Taranaki. Version 1.0. https://cdemtaranaki.govt.nz/assets/Volcano-infographics/Ashfall.PDF

Taranaki; New Zealand (2022)
Taranaki Maunga Debris Avalanches from Taranaki
Taranaki Emergency Management. (2022). Taranaki Maunga. Debris Avalanches from Taranaki Version 1.0. https://cdemtaranaki.govt.nz/assets/Volcano-infographics/Debris-avalanches.PDF

Taranaki; New Zealand (2022)
Taranaki Maunga Lahars from Taranaki
Taranaki Emergency Management. (2022). Taranaki Maunga. Lahars from Taranaki Version 1.0. https://cdemtaranaki.govt.nz/assets/Volcano-infographics/Lahars.PDF

Taranaki; New Zealand (2022)
Taranaki Maunga Other Volcanic Processes
Taranaki Emergency Management. (2022). Taranaki Maunga. Other Volcanic Processes. Version 1.0. https://cdemtaranaki.govt.nz/assets/Volcano-infographics/ballistics-lava-gases.PDF

Taranaki; New Zealand (2022)
Taranaki Maunga Pyroclastic Flows from Taranaki
Taranaki Emergency Management. (2022). Taranaki Maunga. Pyroclastic Flows from Taranaki Version 1.0. https://cdemtaranaki.govt.nz/assets/Volcano-infographics/Pyroclastic-flows.PDF

Taranaki; New Zealand (2022)
Taranaki volcanic hazard map and zones from Neall and Alloway (1996)
Figure 2 in: Mead, S., Procter, J., Bebbington, M., & Rodriguez-Gomez, C. (2022). Probabilistic Volcanic Hazard Assessment for National Park Infrastructure Proximal to Taranaki Volcano (New Zealand). Frontiers in Earth Science, 435. https://doi.org/10.3389/feart.2022.832531. Simplified from: Neall, V. E., & Alloway, B. V. (1996). Volcanic hazard map of Western Taranaki. Massey University, Department of Soil Science Report, 12.

Taranaki; New Zealand (2010)
An example of a volcanic hazard map for Mount Taranaki
Figure 2 in: Becker, J.S., Saunders, W.S.A., Robertson, C.M., Leonard, G.S., & Johnston, D.M. (2010). A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. The Australasian Journal of Disaster and Trauma Studies, 2010-1. (Simplified from: Taranaki Regional Council 2004)

Taranaki; New Zealand (2010)
Hazard zone created from Titan2D computer simulations based on the 1:300 year BAF event from a dome collapse and 3D representation of the created Hazard zone
Figure 5 in: Procter, J. N., Cronin, S. J., Platz, T., Patra, A., Dalbey, K., Sheridan, M., & Neall, V. (2010). Mapping block-and-ash flow hazards based on Titan 2D simulations: a case study from Mt. Taranaki, NZ. Natural Hazards, 53, 483-501.

Taranaki; New Zealand (2010)
Volcanic ash hazard map (contours in mm) for 500 yr return period and volcanic ash hazard map (contours in mm) for 10,000 yr return period
Figure 8 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129

Taranaki; New Zealand (2006)
Mean simulated tephra thickness within the Auckland Region
Figure 6 in: Magill, C. R., Hurst, A. W., Hunter, L. J., & Blong, R. J. (2006). Probabilistic tephra fall simulation for the Auckland Region, New Zealand. Journal of volcanology and geothermal research, 153(3-4), 370-386. https://doi.org/10.1016/j.jvolgeores.2005.12.002

Taranaki; New Zealand (2004)
Ground hugging effects of a volcanic eruption
Taranaki Regional Council. (2004). Civil Defence Emergency Management, Group Plan for Taranaki. Stratford.

Taranaki; New Zealand (1993)
Landslide, Lahar and Associated Flood Hazard Zones Map
Map 3, Page 20 in: Neall, V.E. & Alloway, B.V. (1993). Volcanic hazards at Egmont volcano. Volcanic Hazards Working Group of the Scientific Advisory Committee, Ministry of Civil Defence. Volcanic Hazards Information Series, Number One, 2nd ed. 31 p.

Taranaki; New Zealand (1993)
Lava Flow and Lava Dome Hazard Zone Map
Map 1, Page 15 in: Neall, V.E. & Alloway, B.V. (1993). Volcanic hazards at Egmont volcano. Volcanic Hazards Working Group of the Scientific Advisory Committee, Ministry of Civil Defence. Volcanic Hazards Information Series, Number One, 2nd ed. 31 p.

Taranaki; New Zealand (1993)
Pyroclastic Flow and Lateral Blast Hazard Zones Map
Map 2, Page 17 in: Neall, V.E. & Alloway, B.V. (1993). Volcanic hazards at Egmont volcano. Volcanic Hazards Working Group of the Scientific Advisory Committee, Ministry of Civil Defence. Volcanic Hazards Information Series, Number One, 2nd ed. 31 p.

Taranaki; New Zealand (1993)
Tephra Hazard Zone Map - hazard zones A, B, C, and D in the North Island from future eruptions of Egmont Volcano
Map 5, Page 27 in: Neall, V.E. & Alloway, B.V. (1993). Volcanic hazards at Egmont volcano. Volcanic Hazards Working Group of the Scientific Advisory Committee, Ministry of Civil Defence. Volcanic Hazards Information Series, Number One, 2nd ed. 31 p.

Taranaki; New Zealand (1993)
Tephra Hazard Zones Map for Taranaki
Map 4, Page 25 in: Neall, V.E. & Alloway, B.V. (1993). Volcanic hazards at Egmont volcano. Volcanic Hazards Working Group of the Scientific Advisory Committee, Ministry of Civil Defence. Volcanic Hazards Information Series, Number One, 2nd ed. 31 p.

Taranaki; New Zealand (1985)
Risk zones for future ground-hugging volcanic hazards at Mt. Egmont.
Figure 11 in: Dibble, R.R., Nairn, I.A., & Neall, V.E. (1985). Volcanic hazards of North Island, New Zealand--Overview. Journal of Geodynamics, 3, p. 369-396. https://doi.org/10.1016/0264-3707(85)90043-2

Tarawera (Okataina); New Zealand (2017)
Maps showing the average risk index (here, probability of accumulating ≥10 mm of ash × a Vc of 1.0) in the event of an initial Plinian phase of a rhyolitic Plinian eruption during peak season from the Tarawera LVZ for a fruit farms in the BoP
Figure 8 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7

Tarawera (Okataina); New Zealand (2015)
BET_VH Node 8 maps showing the average conditional probability of accumulating ≥10 kg m−2 tephra given a single Plinian phase resulting from a a basaltic eruption from within the Tarawera LVZ; b a rhyolitic eruption from within the Tarawera LVZ; d a basaltic eruption from within the Haroharo LVZ; e a rhyolitic eruption from within the Haroharo LVZ; e a basaltic eruption from Ruawahia Dome, a single vent within the Tarawera LVZ (see star in Fig. 4); and f a rhyolitic eruption from Ruawahia Dome
Figure 8 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Tarawera (Okataina); New Zealand (2015)
BET_VH Node 8 outputs showing the average absolute probability of accumulating ≥10 kg m−2 of tephra in the next 1 year from a single Plinian phase resulting from a a basaltic eruption and b a rhyolitic eruption, from somewhere within the Tarawera LVZ
Figure 5 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Tarawera (Okataina); New Zealand (2010)
Volcanic hazard map of the Okataina Volcanic Centre
Figure 8 in: Becker, J.S., Saunders, W.S.A., Robertson, C.M., Leonard, G.S., & Johnston, D.M. (2010). A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. The Australasian Journal of Disaster and Trauma Studies, 2010-1. (Simplified from: Nairn, 2002)

Tarawera (Okataina); New Zealand (1993)
Hazard zones defined at Okataina Volcanic Centre based on the effects of past eruptions
Figure 10 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology

Taupo; New Zealand (2010)
Ash thickness (in metres) from our model for 1 Ma of eruptions from Taupo and Okataina centres
Figure 9 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129

Taupo; New Zealand (2010)
Volcanic ash hazard map (contours in mm) for 500 yr return period and volcanic ash hazard map (contours in mm) for 10,000 yr return period
Figure 8 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129

Taupo; New Zealand (2006)
Mean simulated tephra thickness within the Auckland Region
Figure 6 in: Magill, C. R., Hurst, A. W., Hunter, L. J., & Blong, R. J. (2006). Probabilistic tephra fall simulation for the Auckland Region, New Zealand. Journal of volcanology and geothermal research, 153(3-4), 370-386. https://doi.org/10.1016/j.jvolgeores.2005.12.002

Taupo; New Zealand (1985)
Map of the central and eastern area of the North Island of New Zealand, showing (heavy lines) zones of percentage risk of tephra fall exceeding 0.3 m in any 100 year period
Figure 6 in: Dibble, R.R., Nairn, I.A., & Neall, V.E. (1985). Volcanic hazards of North Island, New Zealand--Overview. Journal of Geodynamics, 3, p. 369-396. https://doi.org/10.1016/0264-3707(85)90043-2

Te Maari (Tongariro); New Zealand (2014)
Ballistic vulnerability or probability of casualty assuming an eruption during the time of exposure, along the Tongariro Alpine Crossing
Figure 12 in: Fitzgerald, R. H., Tsunematsu, K., Kennedy, B. M., Breard, E. C. P., Lube, G., Wilson, T. M., Jolly, A.D., Pawson, J., Rosenburg, M.D., & Cronin, S. J. (2014). The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. Journal of volcanology and geothermal research, 286, p. 248-262. https://doi.org/10.1016/j.jvolgeores.2014.04.006

Te Maari (Tongariro); New Zealand (2014)
Impact crater distributions from possible future eruption scenarios modelled using the Tsunematsu et al. (2013) ballistic trajectory model
Figure 11 in: Fitzgerald, R. H., Tsunematsu, K., Kennedy, B. M., Breard, E. C. P., Lube, G., Wilson, T. M., Jolly, A.D., Pawson, J., Rosenburg, M.D., & Cronin, S. J. (2014). The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. Journal of volcanology and geothermal research, 286, p. 248-262. https://doi.org/10.1016/j.jvolgeores.2014.04.006

Te Maari (Tongariro); New Zealand (2012)
Te Maari Eruption Phenomena
GNS Science (compiler). (2012). Te Maari Eruption Phenomena. Version 2.0, 25 August 2012.

Te Maari (Tongariro); New Zealand (2012)
Te Maari Eruption Phenomena
GNS Science (compiler). (2012). Te Maari Eruption Phenomena. Version 2.0, 22 August 2012.

Tongariro; New Zealand (2020)
Volcanic Hazards on Mt Tongariro
GNS Science (compiler). (2020). Volcanic Hazards on Mt Tongariro. Version 7.0. 2020.

Tongariro; New Zealand (2014)
Ballistic vulnerability or probability of casualty assuming an eruption during the time of exposure, along the Tongariro Alpine Crossing
Figure 12 in: Fitzgerald, R. H., Tsunematsu, K., Kennedy, B. M., Breard, E. C. P., Lube, G., Wilson, T. M., Jolly, A.D., Pawson, J., Rosenburg, M.D., & Cronin, S. J. (2014). The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. Journal of volcanology and geothermal research, 286, p. 248-262. https://doi.org/10.1016/j.jvolgeores.2014.04.006

Tongariro; New Zealand (2014)
Impact crater distributions from possible future eruption scenarios modelled using the Tsunematsu et al. (2013) ballistic trajectory model
Figure 11 in: Fitzgerald, R. H., Tsunematsu, K., Kennedy, B. M., Breard, E. C. P., Lube, G., Wilson, T. M., Jolly, A.D., Pawson, J., Rosenburg, M.D., & Cronin, S. J. (2014). The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. Journal of volcanology and geothermal research, 286, p. 248-262. https://doi.org/10.1016/j.jvolgeores.2014.04.006

Tongariro; New Zealand (2013)
Tongariro Eruption Track and Hut Closures 9th March 2013
Department of Conservation. (2013). Tongariro Eruption; Track and Hut Closures. 9th March 2013.

Tongariro; New Zealand (2012)
Eruption Hazards at North Tongariro
GNS Science (compiler). (2012). Te Maari Eruption Phenomena. Version 0.1, 6 August 2012. (Reprinted in: Leonard, G. S., Stewart, C., Wilson, T. M., Procter, J. N., Scott, B. J., Keys, H. J., Jolly, G.E., Wardman, J.B., Cronin. S.J. & McBride, S. K. (2014). Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: a case study from the 2012 Tongariro eruption crisis, New Zealand. Journal of Volcanology and Geothermal Research, 286, p. 208-232. https://doi.org/10.1016/j.jvolgeores.2014.08.018)

Tongariro; New Zealand (2012)
Northern Tongariro Eruption Phenomena
GNS Science (compiler). (2012). Te Maari Eruption Phenomena. Version 0.3, 9 August 2012. (Reprinted in: Leonard, G. S., Stewart, C., Wilson, T. M., Procter, J. N., Scott, B. J., Keys, H. J., Jolly, G.E., Wardman, J.B., Cronin. S.J. & McBride, S. K. (2014). Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: a case study from the 2012 Tongariro eruption crisis, New Zealand. Journal of Volcanology and Geothermal Research, 286, p. 208-232. https://doi.org/10.1016/j.jvolgeores.2014.08.018)

Tongariro; New Zealand (2012)
Northern Tongariro Eruption Phenomena
GNS Science (compiler). (2012). Te Maari Eruption Phenomena. Version 1.0, 11 August 2012. (Reprinted in: Leonard, G. S., Stewart, C., Wilson, T. M., Procter, J. N., Scott, B. J., Keys, H. J., Jolly, G.E., Wardman, J.B., Cronin. S.J. & McBride, S. K. (2014). Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: a case study from the 2012 Tongariro eruption crisis, New Zealand. Journal of Volcanology and Geothermal Research, 286, p. 208-232. https://doi.org/10.1016/j.jvolgeores.2014.08.018)

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 0000 Tuesday 07 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-06.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 0600 Monday 13 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-17. (Reprinted in: Leonard, G. S., Stewart, C., Wilson, T. M., Procter, J. N., Scott, B. J., Keys, H. J., Jolly, G.E., Wardman, J.B., Cronin. S.J. & McBride, S. K. (2014). Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: a case study from the 2012 Tongariro eruption crisis, New Zealand. Journal of Volcanology and Geothermal Research, 286, p. 208-232. https://doi.org/10.1016/j.jvolgeores.2014.08.018)

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 0600 Saturday 11 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-14.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 0600 Sunday 12 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-16.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 0600 Thursday 16 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-21.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 0600 Tuesday 14 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-19.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 0600 Wednesday 15 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-20.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 1200 Friday 10 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-13.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 1200 Thursday 09 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-12.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 1200 Tuesday 07 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-08.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 1200 Wednesday 08 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-09.

Tongariro; New Zealand (2012)
Predicted Ashfall Area for a Tongariro eruption at 1500 Monday 13 August 2012
GNS Science. (2012). Volcanic Alert Bulletin TON2012-18.

Tongariro; New Zealand (2012)
Te Maari Eruption Phenomena
GNS Science (compiler). (2012). Te Maari Eruption Phenomena. Version 2.0, 25 August 2012.

Tongariro; New Zealand (2012)
Te Maari Eruption Phenomena
GNS Science (compiler). (2012). Te Maari Eruption Phenomena. Version 2.0, 22 August 2012.

Tongariro; New Zealand (2010)
Volcanic ash hazard map (contours in mm) for 500 yr return period and volcanic ash hazard map (contours in mm) for 10,000 yr return period
Figure 8 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129

Tongariro; New Zealand (2007)
Volcanic Hazards at Tongariro
GNS Science (compiler). (2007). Volcanic Hazards at Tongariro.

Tongariro; New Zealand (2006)
Mean simulated tephra thickness within the Auckland Region
Figure 6 in: Magill, C. R., Hurst, A. W., Hunter, L. J., & Blong, R. J. (2006). Probabilistic tephra fall simulation for the Auckland Region, New Zealand. Journal of volcanology and geothermal research, 153(3-4), 370-386. https://doi.org/10.1016/j.jvolgeores.2005.12.002

Tuhua (Mayor Island); New Zealand (2006)
Mean simulated tephra thickness within the Auckland Region
Figure 6 in: Magill, C. R., Hurst, A. W., Hunter, L. J., & Blong, R. J. (2006). Probabilistic tephra fall simulation for the Auckland Region, New Zealand. Journal of volcanology and geothermal research, 153(3-4), 370-386. https://doi.org/10.1016/j.jvolgeores.2005.12.002

Nicaragua

Apoyeque; Nicaragua (No date)
Mapa de amenaza determinista por caída de cenizas [m] en el volcán Apoyeque
Figure 6-31 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Apoyeque; Nicaragua (No date)
Mapa de amenaza determinista por flujos piroclásticos en el volcán Apoyeque
Figure 6-30 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Apoyeque; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Casita (San Cristóbal); Nicaragua (1999)
Mapa Preliminar de Amenaza por Avalanchas y Deslaves, Complejo Volcánico San Cristóbal-Casita
Strauch, W. (1999). Mapa Preliminar de Amenaza por Avalanchas y Deslaves, Complejo Volcánico San Cristóbal-Casita. Instituto Nicaragüense de Estudios Territoriales (INETER), Dirección de Geofisica, Managua.

Cerro Negro; Nicaragua (2009)
Mapa de amenaza determinista por caída de cenizas [m] en el volcán Cerro Negro
Figure 6-13 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Cerro Negro; Nicaragua (2009)
Mapa de amenaza determinista por flujos de lava en el volcán Cerro Negro
Figure 6-11 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Cerro Negro; Nicaragua (2009)
Mapa de amenaza determinista por flujos piroclásticos en el volcán Cerro Negro
Figure 6-12 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Cerro Negro; Nicaragua (2009)
Volcán Cerro Negro caída de cenizas
Figure 11 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Cerro Negro; Nicaragua (2009)
Volcán Cerro Negro flujo de lava
Figure 15 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Cerro Negro; Nicaragua (2009)
Volcán Cerro Negro flujos piroclásticos
Figure 13 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Cerro Negro; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Concepción; Nicaragua (2009)
Amenaza por Caida de Ceniza en el Volcán Concepción
Mapa 1 in: Obando, T. & Navarro, M. (2009). Propuestade Rutas de Evacuación ante peligros por Caída de Cenizas y Flujos Piroclásticos en la Isla de Ometepe (Rivas, Nicaragua). https://1library.co/document/y621ejgz-propuesta-evacuacion-peligros-caida-cenizas-piroclasticos-ometepe-nicaragua.html

Concepción; Nicaragua (2009)
Amenaza por Caida de Ceniza en el Volcán Concepción
Mapa 2 in: Obando, T. & Navarro, M. (2009). Propuestade Rutas de Evacuación ante peligros por Caída de Cenizas y Flujos Piroclásticos en la Isla de Ometepe (Rivas, Nicaragua). https://1library.co/document/y621ejgz-propuesta-evacuacion-peligros-caida-cenizas-piroclasticos-ometepe-nicaragua.html

Concepción; Nicaragua (2009)
Amenaza por Caida de Ceniza en el Volcán Concepción
Obando, T. & Navarro, M. (2009). Propuestade Rutas de Evacuación ante peligros por Caída de Cenizas y Flujos Piroclásticos en la Isla de Ometepe (Rivas, Nicaragua). https://1library.co/document/y621ejgz-propuesta-evacuacion-peligros-caida-cenizas-piroclasticos-ometepe-nicaragua.html

Concepción; Nicaragua (2009)
Amenaza por Flujos Piroclasticos en el Volcán Concepción
Obando, T. & Navarro, M. (2009). Propuestade Rutas de Evacuación ante peligros por Caída de Cenizas y Flujos Piroclásticos en la Isla de Ometepe (Rivas, Nicaragua). https://1library.co/document/y621ejgz-propuesta-evacuacion-peligros-caida-cenizas-piroclasticos-ometepe-nicaragua.html

Concepción; Nicaragua (2009)
Volcán Concepción caída de cenizas
Figure 12 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Concepción; Nicaragua (2009)
Volcán Concepción flujo de lava
Figure 16 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Concepción; Nicaragua (2009)
Volcán Concepción flujos piroclásticos
Figure 14 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Concepción; Nicaragua (2002)
Mapa de Balísticos
Navarro Collado, M. & Delgado Granados, H. (2002). Mapa de Balísticos. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM). Mapas de Amenaza - Volcán Concepción. https://webserver2.ineter.gob.ni/geofisica/vol/concepcion/mapas_amenaza.html

Concepción; Nicaragua (2002)
Mapa de Caída de Cenizas
Navarro Collado, M. & Delgado Granados, H. (2002). Mapa de Caída de Cenizas. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM). Mapas de Amenaza - Volcán Concepción. https://webserver2.ineter.gob.ni/geofisica/vol/concepcion/mapas_amenaza.html

Concepción; Nicaragua (2002)
Mapa de Colapsos
Navarro Collado, M. & Delgado Granados, H. (2002). Mapa de Colapsos. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM). Mapas de Amenaza - Volcán Concepción. https://webserver2.ineter.gob.ni/geofisica/vol/concepcion/mapas_amenaza.html

Concepción; Nicaragua (2002)
Mapa de Flujos de Lava
Navarro Collado, M. & Delgado Granados, H. (2002). Mapa de Flujos de Lava. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM). Mapas de Amenaza - Volcán Concepción. https://webserver2.ineter.gob.ni/geofisica/vol/concepcion/mapas_amenaza.html

Concepción; Nicaragua (2002)
Mapa de Flujos Piroclásticos
Navarro Collado, M. & Delgado Granados, H. (2002). Mapa de Flujos Piroclásticos. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM). Mapas de Amenaza - Volcán Concepción. https://webserver2.ineter.gob.ni/geofisica/vol/concepcion/mapas_amenaza.html

Concepción; Nicaragua (2002)
Mapa de Lahares
Navarro Collado, M. & Delgado Granados, H. (2002). Mapa de Lahares. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM). Mapas de Amenaza - Volcán Concepción. https://webserver2.ineter.gob.ni/geofisica/vol/concepcion/mapas_amenaza.html

Concepción; Nicaragua (2002)
Volcán Concepción Mapa de Amenaza Volcánica I
Delgado Granados, H., Navarro Collado, M., Abimelee Farraz, I., & Alatorre Ibarguesngoitia, M.A. (2002). Volcán Concepción Mapa de Amenaza Volcánica I. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM).

Concepción; Nicaragua (2002)
Volcán Concepción Mapa de Amenaza Volcánica II
Delgado Granados, H., Navarro Collado, M., Abimelee Farraz, I., & Alatorre Ibarguesngoitia, M.A. (2002). Volcán Concepción Mapa de Amenaza Volcánica II. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM).

Concepción; Nicaragua (2002)
Volcán Concepción Mapa de Amenaza Volcánica III
Delgado Granados, H., Navarro Collado, M., Abimelee Farraz, I., & Alatorre Ibarguesngoitia, M.A. (2002). Volcán Concepción Mapa de Amenaza Volcánica III. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM).

Concepción; Nicaragua (2001)
Lahar Hazards for Concepción Volcano, Nicaragua
Plate 1 in: Vallance, J.W., Schilling, S.P., Devoli, G., & Howell, M.M. (2001). Lahar hazards at Concepción volcano, Nicaragua. U.S. Geological Survey, Open File Report 2001-457, 15 p., 1 plate. https://doi.org/10.3133/ofr01457

Concepción; Nicaragua (No date)
Mapa de amenaza determinista por caída de cenizas [m] en el volcán Concepción
Figure 6-24 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Concepción; Nicaragua (No date)
Mapa de amenaza determinista por flujos de lava en el volcán Concepción
Figure 6-22 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Concepción; Nicaragua (No date)
Mapa de amenaza determinista por flujos piroclásticos en el volcán Concepción
Figure 6-23 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Concepción; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Concepción; Nicaragua (No date)
Rutas de Escape en el Paraíso
Wilder Pérez, R. & Luis González. (Year Unknown). Rutas de Escape en el Paraíso. La Prensa. https://webserver2.ineter.gob.ni/geofisica/vol/concepcion/doc/rutas-evacuacion.htm

Cosigüina; Nicaragua (No date)
Mapa de amenaza determinista por caída de cenizas [m] en el volcán Cosigüina
Figure 6-20 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Cosigüina; Nicaragua (No date)
Mapa de amenaza determinista por flujos piroclásticos en el volcán Cosigüina
Figure 6-19 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Cosigüina; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

El Chonco (San Cristóbal); Nicaragua (1999)
Mapa Preliminar de Amenaza por Avalanchas y Deslaves, Complejo Volcánico San Cristóbal-Casita
Strauch, W. (1999). Mapa Preliminar de Amenaza por Avalanchas y Deslaves, Complejo Volcánico San Cristóbal-Casita. Instituto Nicaragüense de Estudios Territoriales (INETER), Dirección de Geofisica, Managua.

El Chonco (San Cristóbal); Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

La Pelona (San Cristóbal); Nicaragua (1999)
Mapa Preliminar de Amenaza por Avalanchas y Deslaves, Complejo Volcánico San Cristóbal-Casita
Strauch, W. (1999). Mapa Preliminar de Amenaza por Avalanchas y Deslaves, Complejo Volcánico San Cristóbal-Casita. Instituto Nicaragüense de Estudios Territoriales (INETER), Dirección de Geofisica, Managua.

Las Pilas; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Maderas; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Masaya; Nicaragua (2004)
Volcán Masaya - Mapa de Amenaza Volcánica III
Delgado, H., Navarro, M., & Farraz, I.A. (2004). Volcán Masaya Mapa de Amenaza Volcánica III. Instituto Nicaragüense de Estudios Territoriales (INETER) & Universidad Nacional Autónoma de México (UNAM).

Masaya; Nicaragua (1998)
Mapa de los Peligros Geológicos
Šebesta, J. (1998). Mapa de los Peligros Geológicos. In: Hradecký, P. (1998). Estudio Geológico para Reconocimiento del Riesgo Natural y Vulnerabilidad en el Area de Managua, Masaya y Granada. Servicio Geológico Checo en Colaboración con Instituto Nicaragüense de Estudios Territoriales, Prague.

Masaya; Nicaragua (No date)
Mapa de amenaza determinista por caída de cenizas [m] en el volcán Masaya
Figure 6-17 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Masaya; Nicaragua (No date)
Mapa de amenaza determinista por flujos de lava en el volcán Masaya
Figure 6-15 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Masaya; Nicaragua (No date)
Mapa de amenaza determinista por flujos piroclásticos en el volcán Masaya
Figure 6-16 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Masaya; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Mombacho; Nicaragua (2001)
Lahar Hazards for Mombacho Volcano, Nicaragua
Plate 1 (Color) in: Vallance, J.W., Schilling, S.P., Devoli, G. (2001). Lahar Hazards at Mombacho Volcano, Nicaragua. U.S. Geological Survey, Open-File Report 01-455, 16 p., 1 plate. https://doi.org/10.3133/ofr01455

Mombacho; Nicaragua (2001)
Lahar Hazards for Mombacho Volcano, Nicaragua
Plate 1 (B&W) in: Vallance, J.W., Schilling, S.P., Devoli, G. (2001). Lahar Hazards at Mombacho Volcano, Nicaragua. U.S. Geological Survey, Open-File Report 01-455, 16 p., 1 plate. https://doi.org/10.3133/ofr01455

Mombacho; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Momotombito (Momotombo) ; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Momotombo; Nicaragua (2015)
Mapa de amenaza por caídas de tefra volcán Momotombo
Figure 6 in: Salinas Pérez, E.E. & Palma López, J.G. (2015). Análisis de la Percepción de la Amenaza Volcánica del Volcán Momotombo - Puerto Momotombo. Managua, 91 p.

Momotombo; Nicaragua (2015)
Mapa de amenaza por coladas de lavas volcán Momotombo
Figure 5 in: Salinas Pérez, E.E. & Palma López, J.G. (2015). Análisis de la Percepción de la Amenaza Volcánica del Volcán Momotombo - Puerto Momotombo. Managua, 91 p.

Momotombo; Nicaragua (2009)
Volcán Momotombo caída de cenizas
Figure 18 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Momotombo; Nicaragua (2009)
Volcán Momotombo flujo de lava
Figure 22 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Momotombo; Nicaragua (2009)
Volcán Momotombo flujos piroclásticos
Figure 20 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Momotombo; Nicaragua (No date)
Mapa de amenaza determinista por caída de cenizas [m] en el volcán Momotombo
Figure 6-28 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Momotombo; Nicaragua (No date)
Mapa de amenaza determinista por flujos de lava en el volcán Momotombo
Figure 6-26 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Momotombo; Nicaragua (No date)
Mapa de amenaza determinista por flujos piroclásticos en el volcán Momotombo
Figure 6-27 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Momotombo; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Nejapa-Miraflores; Nicaragua (2019)
This statistical model of spatial density for volcanic vent locations (white circles) in the Nejapa volcano alignment on the western side of the Managua graben (Nicaragua) is superimposed on a shaded-relief digital elevation model (DEM)
Figure 1 in: Connor, C. B., Connor, L. J., Germa, A., Richardson, J. A., Bebbington, M. S., Gallant, E., & Saballos, A. (2019). How to use kernel density estimation as a diagnostic and forecasting tool for distributed volcanic vents. Statistics in Volcanology, 4 (3). p. 1-25. http://dx.doi.org/10.5038/2163-338X.4.3

Nejapa-Miraflores; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Rota; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

San Cristóbal; Nicaragua (2019)
Mapa de Amenazas Volcán San Cristóbal
Instituto Nicaragüense de Estudios Territoriales (INETER). (2019). Sismos y Volcanes de Nicaragua 2019. Boletín Sismológico, Vulcanológico y Geológico.

San Cristóbal; Nicaragua (2012)
Mapa de Amenazas Volcánica por Lahares y Flujos Piroclasticos Volcan San Cristóbal
Instituto Nicaragüense de Estudios Territoriales (INETER). (2012). Mapa de Amenazas Volcánica por Lahares y Flujos Piroclasticos Volcan San Cristóbal. Erupción Volcán San Cristóbal 08 Septiembre 2012.

San Cristóbal; Nicaragua (2009)
San Cristóbal flujo de lava
Figure 21 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

San Cristóbal; Nicaragua (2009)
Volcán San Cristóbal caída de cenizas
Figure 17 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

San Cristóbal; Nicaragua (2009)
Volcán San Cristóbal flujos piroclásticos
Figure 19 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

San Cristóbal; Nicaragua (2006)
Amenazas Asociadas al Volcán San Cristóbal
Instituto Nicaragüense de Estudios Territoriales (INETER). (2006). Amenazas Asociadas al Volcán San Cristóbal. https://webserver2.ineter.gob.ni/vol/cristobal/Chinandega.gif

San Cristóbal; Nicaragua (2006)
Amenazas Asociadas al Volcán San Cristóbal
Instituto Nicaragüense de Estudios Territoriales (INETER). (2006). Amenazas Asociadas al Volcán San Cristóbal. https://webserver2.ineter.gob.ni/vol/cristobal/Chinandega.gif

San Cristóbal; Nicaragua (1999)
Mapa Preliminar de Amenaza por Avalanchas y Deslaves, Complejo Volcánico San Cristóbal-Casita
Strauch, W. (1999). Mapa Preliminar de Amenaza por Avalanchas y Deslaves, Complejo Volcánico San Cristóbal-Casita. Instituto Nicaragüense de Estudios Territoriales (INETER), Dirección de Geofisica, Managua.

San Cristóbal; Nicaragua (No date)
Mapa de amenaza determinista por caída de cenizas [m] en el volcán San Cristóbal
Figure 6-5 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

San Cristóbal; Nicaragua (No date)
Mapa de amenaza determinista por flujos de lava en el volcán San Cristóbal
Figure 6-3 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

San Cristóbal; Nicaragua (No date)
Mapa de amenaza determinista por flujos piroclásticos en el volcán San Cristóbal
Figure 6-4 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

San Cristóbal; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Telica; Nicaragua (2006)
Amenaza de flujo de lava
Instituto Nicaragüense de Estudios Territoriales (INETER). (2006). Amenaza de flujo de lava.

Telica; Nicaragua (2006)
Amenaza por bombas volcánicas
Instituto Nicaragüense de Estudios Territoriales (INETER). (2006). Amenaza por bombas volcánicas.

Telica; Nicaragua (2006)
Amenaza por caída de tephra
Instituto Nicaragüense de Estudios Territoriales (INETER). (2006). Amenaza por caída de tephra.

Telica; Nicaragua (2006)
Amenaza por flujos piroclásticos y lahares
Instituto Nicaragüense de Estudios Territoriales (INETER). (2006). Amenaza por flujos piroclásticos y lahares.

Telica; Nicaragua (2006)
Mapa de Amenaza Volcánica I - Amenaza de flujo de lava en el volcán Telica-Área del complejo volcánico El Hoyo
Instituto Nicaragüense de Estudios Territoriales (INETER) & Japan International Cooperation Agency (JICA). (2006). Mapa de Amenaza Volcánica I - Amenaza de flujo de lava en el volcán Telica-Área del complejo volcánico El Hoyo.

Telica; Nicaragua (No date)
Mapa de amenaza determinista por caída de cenizas [m] en el volcán Telica
Figure 6-9 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Telica; Nicaragua (No date)
Mapa de amenaza determinista por flujos de lava en el volcán Telica
Figure 6-7 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Telica; Nicaragua (No date)
Mapa de amenaza determinista por flujos piroclásticos en el volcán Telica
Figure 6-8 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Telica; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Zapatera; Nicaragua (No date)
Mapa de Vulnerabilidades y Peligro ante Volcanes
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Norway

Jan Mayen; Norway (2022)
Concentration extent hazard map at FL050
Figure 10 in: Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G. & Costa, A. (2022). Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic. Natural Hazards and Earth System Sciences, 22(1), 139-163. https://doi.org/10.5194/nhess-22-139-2022

Jan Mayen; Norway (2022)
Exceedance probability maps at FL050
Figure 9 in: Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G. & Costa, A. (2022). Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic. Natural Hazards and Earth System Sciences, 22(1), 139-163. https://doi.org/10.5194/nhess-22-139-2022

Jan Mayen; Norway (2022)
Exceedance probability maps at FL250
Figure D1 in: Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G. & Costa, A. (2022). Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic. Natural Hazards and Earth System Sciences, 22(1), 139-163. https://doi.org/10.5194/nhess-22-139-2022

Jan Mayen; Norway (2022)
Persistence maps at FL050 (large class)
Figure 11 in: Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G. & Costa, A. (2022). Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic. Natural Hazards and Earth System Sciences, 22(1), 139-163. https://doi.org/10.5194/nhess-22-139-2022

Jan Mayen; Norway (2022)
Persistence maps at FL050 (medium class)
Figure 12 in: Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G. & Costa, A. (2022). Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic. Natural Hazards and Earth System Sciences, 22(1), 139-163. https://doi.org/10.5194/nhess-22-139-2022

Jan Mayen; Norway (2022)
Persistence maps at FL250 (large class)
Figure D2 in: Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G. & Costa, A. (2022). Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic. Natural Hazards and Earth System Sciences, 22(1), 139-163. https://doi.org/10.5194/nhess-22-139-2022

Jan Mayen; Norway (2022)
Persistence maps at FL250 (medium class)
Figure D3 in: Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G. & Costa, A. (2022). Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic. Natural Hazards and Earth System Sciences, 22(1), 139-163. https://doi.org/10.5194/nhess-22-139-2022

Jan Mayen; Norway (2022)
The isolines show the arrival time in hours required for the ash concentration (at FL050) to exceed a threshold of 2 mg m−3 with an exceedance probability of 5% between 0 and 48 h after the eruption
Figure 8 in: Titos, M., Martínez Montesinos, B., Barsotti, S., Sandri, L., Folch, A., Mingari, L., Macedonio, G. & Costa, A. (2022). Long-term hazard assessment of explosive eruptions at Jan Mayen (Norway) and implications for air traffic in the North Atlantic. Natural Hazards and Earth System Sciences, 22(1), 139-163. https://doi.org/10.5194/nhess-22-139-2022