Browse Maps By Volcano
Select the first letter of volcano.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Showing 17 volcanoes
Cerro Overo, Chile [VNUM = 355097]
Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Nevados Ojos del Salado, Chile-Argentina [VNUM = 355130]
Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439
Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.
Odamoisan [Tebenkov], Russia [VNUM = 290072]
Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.
Ohachi (Kirishimayama), Japan [VNUM = 282090]
Kirishimayama (Ohachi) Volcanic Alert Levels (2019)
Japan Meteorological Agency. (2019). Kirishimayama (Ohachi) Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.
Volcanic disaster prevention map of Mt. Kirishima (2019)
Volcano Disaster Management Councils of Mt. Kirishima (ED). (2019). Volcanic disaster prevention map of Mt. Kirishima. Volcano Disaster Management Councils of Mt. Kirishima, MLIT Miyazaki Office of River and National Highway, Sabo and Landslide Technical Center, Kan-Kirisima (Ebino City, Kirisima City, Kobayashi City, Soo City, Takaharu Town, Miyakonojo City and Yusui Town).
Kirishima Volcano Disaster Prevention Map (2009)
Kan-Kirishima Conference. (2009). Kirishima Volcano Disaster Prevention Map. Miyakonojo, Kogen Town, Kobayashi City, Ebino City, Yusui Town, Shima City, Fuo City.
Ohataike (Kirishimayama), Japan [VNUM = 282090]
Volcanic disaster prevention map of Mt. Kirishima (2019)
Volcano Disaster Management Councils of Mt. Kirishima (ED). (2019). Volcanic disaster prevention map of Mt. Kirishima. Volcano Disaster Management Councils of Mt. Kirishima, MLIT Miyazaki Office of River and National Highway, Sabo and Landslide Technical Center, Kan-Kirisima (Ebino City, Kirisima City, Kobayashi City, Soo City, Takaharu Town, Miyakonojo City and Yusui Town).
Kirishima Volcano Disaster Prevention Map (2009)
Kan-Kirishima Conference. (2009). Kirishima Volcano Disaster Prevention Map. Miyakonojo, Kogen Town, Kobayashi City, Ebino City, Yusui Town, Shima City, Fuo City.
Okataina, New Zealand [VNUM = 241050]
Map showing the average probability of accumulating C10 mm of ash from the initial Plinian phase of either a rhyolitic or basaltic Plinian eruption from anywhere within the OVC over the next 1 year (2017)
Figure 5 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7
Map showing the average probability of accumulating ≥100 mm of ash from the initial Plinian phase of either a rhyolitic or basaltic Plinian eruption from anywhere within the OVC over the next one year (2017)
Figure 4 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7
Maps showing the average probability of accumulating ≥10 mm of ash in the event of a–c a basaltic Plinian eruption from Ruawahia Dome, a vent in the Tarawera LVZ, and d–f an initial Plinian phase of a rhyolitic Plinian eruption from Ruawahia Dome, for fruit farms in the BoP (2017)
Figure 9 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7
Maps showing the average risk index (here, probability of accumulating ≥10 mm of ash × a Vc of 1.0) in the event of an initial Plinian phase of a rhyolitic Plinian eruption during peak season from the Tarawera LVZ for a fruit farms in the BoP (2017)
Figure 8 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7
BET_VH Node 8 maps showing the average absolute probability of accumulating ≥10 km m−2 of tephra in the next 1 year from a single Plinian phase resulting from a a basaltic eruption from within the OVC, b a rhyolitic eruption from within the OVC and c either a basaltic or rhyolitic eruption from within the OVC (2015)
Figure 7 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y
BET_VH Node 8 maps showing the average conditional probability of accumulating ≥10 kg m−2 tephra given a single Plinian phase resulting from a a basaltic eruption from within the Tarawera LVZ; b a rhyolitic eruption from within the Tarawera LVZ; d a basaltic eruption from within the Haroharo LVZ; e a rhyolitic eruption from within the Haroharo LVZ; e a basaltic eruption from Ruawahia Dome, a single vent within the Tarawera LVZ (see star in Fig. 4); and f a rhyolitic eruption from Ruawahia Dome (2015)
Figure 8 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y
BET_VH Node 8 outputs showing the average absolute probability of accumulating ≥10 kg m−2 of tephra in the next 1 year from a single Plinian phase resulting from a a basaltic eruption and b a rhyolitic eruption, from somewhere within the Tarawera LVZ (2015)
Figure 5 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y
Ash thickness (in metres) from our model for 1 Ma of eruptions from Taupo and Okataina centres (2010)
Figure 9 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129
Volcanic ash hazard map (contours in mm) for 500 yr return period and volcanic ash hazard map (contours in mm) for 10,000 yr return period (2010)
Figure 8 in: Hurst, T. & Smith, W. (2010). Volcanic ashfall in New Zealand–probabilistic hazard modelling for multiple sources. New Zealand Journal of Geology and Geophysics, 53(1), 1-14. https://doi.org/10.1080/00288301003631129
Volcanic hazard map of the Okataina Volcanic Centre (2010)
Figure 8 in: Becker, J.S., Saunders, W.S.A., Robertson, C.M., Leonard, G.S., & Johnston, D.M. (2010). A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. The Australasian Journal of Disaster and Trauma Studies, 2010-1. (Simplified from: Nairn, 2002)
Mean simulated tephra thickness within the Auckland Region (2006)
Figure 6 in: Magill, C. R., Hurst, A. W., Hunter, L. J., & Blong, R. J. (2006). Probabilistic tephra fall simulation for the Auckland Region, New Zealand. Journal of volcanology and geothermal research, 153(3-4), 370-386. https://doi.org/10.1016/j.jvolgeores.2005.12.002
A map of the possible distribution of a future rhyolite pyroclastic fall deposit from the Okataina Centre, based on past eruption deposits (1993)
Figure 11 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology
Hazard zones defined at Okataina Volcanic Centre based on the effects of past eruptions (1993)
Figure 10 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology
Map of the central and eastern area of the North Island of New Zealand, showing (heavy lines) zones of percentage risk of tephra fall exceeding 0.3 m in any 100 year period (1985)
Figure 6 in: Dibble, R.R., Nairn, I.A., & Neall, V.E. (1985). Volcanic hazards of North Island, New Zealand--Overview. Journal of Geodynamics, 3, p. 369-396. https://doi.org/10.1016/0264-3707(85)90043-2
Okmok, United States [VNUM = 311290]
Areas likely to be affected by pyroclastic flows during typical small to moderate phreatomagmatic explosive eruptions (2005)
Figure 14 in: Beget, J.E., Larsen, J.F., Neal, C.A., Nye, C.J., & Schaefer, J.R. (2005). Preliminary volcano-hazard assessment for Okmok Volcano, Umnak Island, Alaska. Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS), Report of Investigation RI 2004-3, 32 p., 1 sheet, scale 1:150,000. http://doi.org/10.14509/7042
Ash fall and ballistic hazard areas on Umnak Island during explosive eruptions within the caldera at Okmok Volcano (2005)
Figure 13 in: Beget, J.E., Larsen, J.F., Neal, C.A., Nye, C.J., & Schaefer, J.R. (2005). Preliminary volcano-hazard assessment for Okmok Volcano, Umnak Island, Alaska. Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS), Report of Investigation RI 2004-3, 32 p., 1 sheet, scale 1:150,000. http://doi.org/10.14509/7042
Debris avalanches are most likely to occur from the steep flanks of Tulik Volcano and the inner caldera walls of Okmok Volcano (2005)
Figure 17 in: Beget, J.E., Larsen, J.F., Neal, C.A., Nye, C.J., & Schaefer, J.R. (2005). Preliminary volcano-hazard assessment for Okmok Volcano, Umnak Island, Alaska. Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS), Report of Investigation RI 2004-3, 32 p., 1 sheet, scale 1:150,000. http://doi.org/10.14509/7042
Floods and lahars are most likely to affect the Crater Creek region on the northeast side of Okmok Volcano (2005)
Figure 15 in: Beget, J.E., Larsen, J.F., Neal, C.A., Nye, C.J., & Schaefer, J.R. (2005). Preliminary volcano-hazard assessment for Okmok Volcano, Umnak Island, Alaska. Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS), Report of Investigation RI 2004-3, 32 p., 1 sheet, scale 1:150,000. http://doi.org/10.14509/7042
Preliminary Volcano-Hazard Assessment for Okmok Volcano, Umnak Island, Alaska (2005)
Sheet 1 in: Beget, J.E., Larsen, J.F., Neal, C.A., Nye, C.J., & Schaefer, J.R. (2005). Preliminary volcano-hazard assessment for Okmok Volcano, Umnak Island, Alaska. Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS), Report of Investigation RI 2004-3, 32 p., 1 sheet, scale 1:150,000. http://doi.org/10.14509/7042
Selected representative flight paths of commercial freight and passenger airlines crossing the North Pacific (2005)
Figure 11 in: Beget, J.E., Larsen, J.F., Neal, C.A., Nye, C.J., & Schaefer, J.R. (2005). Preliminary volcano-hazard assessment for Okmok Volcano, Umnak Island, Alaska. Department of Natural Resources, Division of Geological & Geophysical Surveys (DGGS), Report of Investigation RI 2004-3, 32 p., 1 sheet, scale 1:150,000. http://doi.org/10.14509/7042
Olca-Paruma, Chile-Bolivia [VNUM = 355050]
Peligros del Complejo Volcánico Olca-Paruma (2013)
Orozco, G.; Bertin, D. (2013). Mapa Preliminar de peligros del Complejo volcánico Olca-Paruma, Regiones de Tarapacá y Antofagasta. Informe inédito, Subdirección Nacional de Geología, Programa de Riesgo Volcánico, Escala 1:75.000. Santiago.
Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.
Ollague, Chile-Bolivia [VNUM = 355060]
Peligros Volcánicos del Volcán Ollagüe (2013)
Bertin, D.; Orozco, G. (2013). Mapa Preliminar de peligros volcánicos Volcán Ollagüe, Región de Antofagasta. Informe inédito, Subdirección Nacional de Geología, Programa de Riesgo Volcánico, Escala 1:75.000. Santiago.
Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.
Olot Volcanic Field, Spain [VNUM = 210030]
Ash fallout simulations with an 8-km column height and volume of 0.05 km³ (2015)
Figure 8 in: Bartolini, S., Bolós, X., Martí, J., Pedra, E. R., & Planagumà, L. (2015). Hazard assessment at the quaternary La Garrotxa volcanic field (NE Iberia). Natural Hazards, 78(2), 1349-1367. https://doi.org/10.1007/s11069-015-1774-y
Lava flow simulation probability map (2015)
Figure 6 in: Bartolini, S., Bolós, X., Martí, J., Pedra, E. R., & Planagumà, L. (2015). Hazard assessment at the quaternary La Garrotxa volcanic field (NE Iberia). Natural Hazards, 78(2), 1349-1367. https://doi.org/10.1007/s11069-015-1774-y
PDC simulation probability map (2015)
Figure 7 in: Bartolini, S., Bolós, X., Martí, J., Pedra, E. R., & Planagumà, L. (2015). Hazard assessment at the quaternary La Garrotxa volcanic field (NE Iberia). Natural Hazards, 78(2), 1349-1367. https://doi.org/10.1007/s11069-015-1774-y
Qualitative hazard map for the GVF (2015)
Figure 9 in: Bartolini, S., Bolós, X., Martí, J., Pedra, E. R., & Planagumà, L. (2015). Hazard assessment at the quaternary La Garrotxa volcanic field (NE Iberia). Natural Hazards, 78(2), 1349-1367. https://doi.org/10.1007/s11069-015-1774-y
Susceptibility map of future eruptions in the GVF calculated with QVAST tool (2015)
Figure 5 in: Bartolini, S., Bolós, X., Martí, J., Pedra, E. R., & Planagumà, L. (2015). Hazard assessment at the quaternary La Garrotxa volcanic field (NE Iberia). Natural Hazards, 78(2), 1349-1367. https://doi.org/10.1007/s11069-015-1774-y
Ontakesan, Japan [VNUM = 283040]
Ontakesan Volcanic Disaster Prevention Map (mobile version for climbers) (2019)
Gifu Prefecture Ontakesan Volcano Disaster Prevention Council. (2019). Ontakesan volcanic disaster prevention map (mobile version for climbers).
Ontakesan Volcanic Hazard Map (2019)
Volcano Disaster Management Councils of Mt. Ontakesan. (2019). Ontakesan Volcanic Hazard Map.
Ontakesan Volcano Disaster Prevention Map (2019)
Ontakesan Volcano Disaster Prevention Council. (2019). Ontakesan Volcano Disaster Prevention Map.
Ontakesan Volcanic Alert Levels (2018)
Japan Meteorological Agency. (2018). Ontakesan Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.
Ontakesan Volcano Disaster Prevention Map (2016)
Takayama City Ontakesan Volcano Disaster Prevention Council. (2016). Ontakesan Volcano Disaster Prevention Map.
Ontakesan Volcanic Hazard Map (2015)
Ontakesan Volcano Disaster Prevention Council. (2015). Ontakesan Volcanic Hazard Map. (Reprinted in: Ontakesan Volcanic Eruption Emergency Disaster Mitigation Measures Sabo Plan Study Group. (2018). Ontakesan Volcanic Eruption Emergency Disaster Mitigation Measures Sabo Plan.)
Ontakesan Volcano Hazard Map (2015)
Ontakesan Volcano Disaster Prevention Council. (2015). Ontakesan Volcano Hazard Map.
Opala, Russia [VNUM = 300080]
Scheme of volcano-geographical zoning in Kamchatka (1962)
Figure 2 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.
Öræfajökull, Iceland [VNUM = 374010]
Map showing potential impact of tephra fallout to roads in case of a 1362-like eruption at Öræfajökull (2018)
Figure 9 in: Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., & Karlsdóttir, S. (2018). Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model. Frontiers in Earth Science, 6, 196. https://doi.org/10.3389/feart.2018.00196
Map showing potential tephra fallout impact to airport in case of a 1362-like eruption at Öræfajökull (2018)
Figure 10 in: Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., & Karlsdóttir, S. (2018). Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model. Frontiers in Earth Science, 6, 196. https://doi.org/10.3389/feart.2018.00196
Map showing potential tephra fallout impact to power-lines in case of a 1362-like eruption at Öræfajökull (2018)
Figure 11 in: Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., & Karlsdóttir, S. (2018). Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model. Frontiers in Earth Science, 6, 196. https://doi.org/10.3389/feart.2018.00196
Probabilistic hazard map for tephra loading higher than 1.0 kg/m2 given an eruption at Öræfajökull as 1362 AD (2018)
Figure 6 in: Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., & Karlsdóttir, S. (2018). Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model. Frontiers in Earth Science, 6, 196. https://doi.org/10.3389/feart.2018.00196
Probabilistic hazard map for tephra loading higher than 100 kg/m² given an eruption at Öræfajökull as 1362 AD (2018)
Figure 7 in: Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., & Karlsdóttir, S. (2018). Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model. Frontiers in Earth Science, 6, 196. https://doi.org/10.3389/feart.2018.00196
Probabilistic hazard map for tephra loading higher than 1000 kg/m² given an eruption at Öræfajökull as 1362 AD (2018)
Figure 8 in: Barsotti, S., Di Rienzo, D. I., Thordarson, T., Björnsson, B. B., & Karlsdóttir, S. (2018). Assessing impact to infrastructures due to tephra fallout from Öræfajökull volcano (Iceland) by using a scenario-based approach and a numerical model. Frontiers in Earth Science, 6, 196. https://doi.org/10.3389/feart.2018.00196
Osorno, Chile [VNUM = 358010]
Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.
Mapa de Peligros del Volcan Osorno (1999)
Moreno, H. (1999). Mapa de Peligros del Volcán Osorno, Región de Los Lagos. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Documentos de Trabajo, No. 11, 1 mapa escala 1: 75.000. Santiago.
Owens River (Big Pine Volcanic Field), United States [VNUM = 323823]
Potential Hazards from future volcanic eruptions in California (1989)
Plate 1 in: Miller, C.D. (1989). Potential hazards from future volcanic eruptions in California. U.S. Geological Survey, Bulletin 1847, 17 p., 2 tables, 1 plate, scale 1:500,000.
Ozernoy, Russia [VNUM = 300051]
Scheme of volcano-geographical zoning in Kamchatka (1962)
Figure 2 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.
Pico de Orizaba, Mexico [VNUM = 341100]
Maps showing Level I and Level II pyroclastic flow simulations (2004)
Figure 3 in: Sheridan, M. F., Hubbard, B., Carrasco-Núñez, G., & Siebe, C. (2004). Pyroclastic flow hazard at Volcán Citlaltépetl. Natural Hazards, 33(2), p. 209-221. https://doi.org/10.1023/B:NHAZ.0000037028.89829.d1
Mapa de Peligros del Volcán Citlaltépetl (Pico de Orizaba) (2001)
Sheridan, M.F., Carrasco-Núñez, G., Hubbard, B.E., Siebe, C., Rodríguez-Elizarrarás, S. (2001). Mapa de Peligros del Volcán Citlaltépetl (Pico de Orizaba). Universidad Nacional Autónoma de México (UNAM), Instituto de Geología. Coyoacán.
Zonas de Peligro Volcán Citlaltépetl (Pico de Orizaba) ([?])
Veracruz Gobierno del Estado. (Year Unknown). Zonas de Peligro Volcán Citlaltépetl (Pico de Orizaba). Veracruz Gobierno del Estado, Riesgo Volcánico. http://www.veracruz.gob.mx/proteccioncivil/riesgo-volcanico/