Browse Maps By Volcano

Select the first letter of volcano.
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Showing 16 volcanoes

Ebeko, Russia [VNUM = 290380]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Ebinokogen-Ioyama (Kirishimayama), Japan [VNUM = 282090]

Volcanic disaster prevention map of Mt. Kirishima (2019)
Volcano Disaster Management Councils of Mt. Kirishima (ED). (2019). Volcanic disaster prevention map of Mt. Kirishima. Volcano Disaster Management Councils of Mt. Kirishima, MLIT Miyazaki Office of River and National Highway, Sabo and Landslide Technical Center, Kan-Kirisima (Ebino City, Kirisima City, Kobayashi City, Soo City, Takaharu Town, Miyakonojo City and Yusui Town).

Kirishimayama (Ebinokogen-Ioyama) Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Kirishimayama (Ebinokogen-Ioyama) Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Kirishima Volcano Disaster Prevention Map (2009)
Kan-Kirishima Conference. (2009). Kirishima Volcano Disaster Prevention Map. Miyakonojo, Kogen Town, Kobayashi City, Ebino City, Yusui Town, Shima City, Fuo City.

Ebulobo, Indonesia [VNUM = 264100]

Volcanic Hazard Map of Ebulobo Volcano East Nusatenggara Province (2007)
Wahyudin, D., Mulyana, A.R., Karim A., & Riyadi. (2007). Volcanic Hazard Map of Ebulobo Volcano East Nusatenggara Province. Center for Volcanology and Geological Hazard Mitigation (CVGHM).

Egmont (Taranaki), New Zealand [VNUM = 241030]

Tephra Hazard Zone Map - hazard zones A, B, C, and D in the North Island from future eruptions of Egmont Volcano (1993)
Map 5, Page 27 in: Neall, V.E. & Alloway, B.V. (1993). Volcanic hazards at Egmont volcano. Volcanic Hazards Working Group of the Scientific Advisory Committee, Ministry of Civil Defence. Volcanic Hazards Information Series, Number One, 2nd ed. 31 p.

Risk zones for future ground-hugging volcanic hazards at Mt. Egmont. (1985)
Figure 11 in: Dibble, R.R., Nairn, I.A., & Neall, V.E. (1985). Volcanic hazards of North Island, New Zealand--Overview. Journal of Geodynamics, 3, p. 369-396. https://doi.org/10.1016/0264-3707(85)90043-2

Egon, Indonesia [VNUM = 264160]

Volcanic Hazard Map of Egon Volcano, Sikka Regency, East Nusatenggara Province (2005)
Sutawidjaja, I.S., Mulyana, A.R., Chaniago, R., & Taufiqurrahman R. (2005). Volcanic Hazard Map of Egon Volcano, Sikka Regency, East Nusatenggara Province. Directorate of Volcanology and Geological Hazard Mitigation (DVGHM).

Ekarma, Russia [VNUM = 290270]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Eldey, Iceland [VNUM = 371022]

Eldey volcanic system - Possible range of isopachs (cm). Based on submarine eruptions on Reykjanes volcanic system (2019)
Larsen, G. (2019). Eldey. In: Oladottir, B., Larsen, G. & Guðmundsson, M. T. Catalogue of Icelandic Volcanoes. Iceland Meteorological Office (IMO), Univeristy of Iceland, and Civil Protection Department of the National Commissioner of the Iceland Police (CPD-NCIP). https://icelandicvolcanos.is//index.html (Simplified from: S.P. Jakobsson Unpublished data)

Eldey, possible range of isopachs based on submarine eruptions on Reykjanes volcanic system (cm) - After Jakobsson S.P. (Unpublished material) (2019)
Larsen, G. (2019). Eldey. In: Oladottir, B., Larsen, G. & Guðmundsson, M. T. Catalogue of Icelandic Volcanoes. Iceland Meteorological Office (IMO), Univeristy of Iceland, and Civil Protection Department of the National Commissioner of the Iceland Police (CPD-NCIP). (Simplified from: S.P. Jakobsson Unpublished data)

Emmons Lake, United States [VNUM = 312020]

Hazard Zonation for Lava Flow (2006)
Figure 23 in: Waythomas, C.F., Miller, T.P. & Mangan, M.T. (2006). Preliminary volcano hazard assessment for the Emmons Lake Volcanic Center, Alaska. U.S. Geological Survey, Scientific Investigations Report 2006-5248, 33 p.

Hazard Zonation for Volcanic Gas (2006)
Figure 24 in: Waythomas, C.F., Miller, T.P. & Mangan, M.T. (2006). Preliminary volcano hazard assessment for the Emmons Lake Volcanic Center, Alaska. U.S. Geological Survey, Scientific Investigations Report 2006-5248, 33 p.

Preliminary Volcano-Hazard Assessment for the Emmons Lake Volcanic Center, Alaska (2006)
Plate 1 in: Waythomas, C.F., Miller, T.P. & Mangan, M.T. (2006). Preliminary volcano hazard assessment for the Emmons Lake Volcanic Center, Alaska. U.S. Geological Survey, Scientific Investigations Report 2006-5248, 33 p. https://doi.org/10.3133/sir20065248

Esan, Japan [VNUM = 285011]

Esan Volcanic Alert Levels (2018)
Japan Meteorological Agency. (2018). Esan Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Expected scope of volcanic phenomena and areas targeted for evacuation (2016)
Page 4 in: Hakodate City. (2016). Disaster Prevention Handbook of Esan. 12 p.

Traffic regulations and evacuation routes (When volcanic alert level 5 [5-1] (evacuation) is announced) (2016)
Page 7-8 in: Hakodate City. (2016). Disaster Prevention Handbook of Esan. 12 p.

Traffic regulations and evacuation routes (When volcanic alert level 5 [5-3] (evacuation) is announced) (2016)
Page 9-10 in: Hakodate City. (2016). Disaster Prevention Handbook of Esan. 12 p.

Traffic regulations and evacuation routes (when volcanicn alert level 2 (regulation around crater) is announced) (2016)
Page 6 in: Hakodate City. (2016). Disaster Prevention Handbook of Esan. 12 p.

Escorial (Corrida de Cori Volcanic Field), Chile-Argentina [VNUM = 355112]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Etna, Italy [VNUM = 211060]

Oblique view of the hazard map showing the potential for lava flow inundation on Mt. Etna (2020)
Figure 2 in: Del Negro, C., Cappello, A., Bilotta, G., Ganci, G., Hérault, A., & Zago, V. (2020). Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. GSA Bulletin, 132(7-8), 1615-1625. https://doi.org/10.1130/B35290.1

Oblique view of the risk map for lava flow inundation on the flanks of Mt. Etna for the next 50 years (2020)
Figure 5 in: Del Negro, C., Cappello, A., Bilotta, G., Ganci, G., Hérault, A., & Zago, V. (2020). Living at the edge of an active volcano: Risk from lava flows on Mt. Etna. GSA Bulletin, 132(7-8), 1615-1625. https://doi.org/10.1130/B35290.1

Evacuation times to reach the safe zone based on walking speed of 3.3 km h^−1 (2019)
Figure 4 in: Osman, S., Rossi, E., Bonadonna, C., Frischknecht, C., Andronico, D., Cioni, R., & Scollo, S. (2019). Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna. Natural Hazards and Earth System Sciences, 19(3), 589-610. https://doi.org/10.5194/nhess-19-589-2019

Evacuation times to reach the safe zone based on walking speed of 3.3 km h^−1, assuming people start a maximum of 300 m from any path, with (a) one shelter and (b) two shelters (2019)
Figure 5 in: Osman, S., Rossi, E., Bonadonna, C., Frischknecht, C., Andronico, D., Cioni, R., & Scollo, S. (2019). Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna. Natural Hazards and Earth System Sciences, 19(3), 589-610. https://doi.org/10.5194/nhess-19-589-2019

Probability map showing exposure of infrastructure to impact from a 5 cm clast (2019)
Figure 3 in: Osman, S., Rossi, E., Bonadonna, C., Frischknecht, C., Andronico, D., Cioni, R., & Scollo, S. (2019). Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna. Natural Hazards and Earth System Sciences, 19(3), 589-610. https://doi.org/10.5194/nhess-19-589-2019

Hazard map by lava flow inundation at Mt. Etna, based on 28,908 simulations of lava flow paths starting from 4,818 different potential vents. (2013)
Figure 3 in: Del Negro, C., Cappello, A., Neri, M., Bilotta, G., Hérault, A., & Ganci, G. (2013). Lava flow hazards at Mount Etna: constraints imposed by eruptive history and numerical simulations. Scientific Reports, 3(1). https://doi.org/10.1038/srep03493

Hazard map for lava flow inundation at Etna’s summit area. (2013)
Figure 5 in: Del Negro, C., Cappello, A., Neri, M., Bilotta, G., Hérault, A., & Ganci, G. (2013). Lava flow hazards at Mount Etna: constraints imposed by eruptive history and numerical simulations. Scientific Reports, 3(1). https://doi.org/10.1038/srep03493

Spatiotemporal probability map of vent opening at Mt. Etna for the next 10 years within the summit area (2013)
Figure 4 in: Del Negro, C., Cappello, A., Neri, M., Bilotta, G., Hérault, A., & Ganci, G. (2013). Lava flow hazards at Mount Etna: constraints imposed by eruptive history and numerical simulations. Scientific Reports, 3(1). https://doi.org/10.1038/srep03493

Spatiotemporal probability map of vent opening at Mt. Etna for the next 50 years (2013)
Figure 2 in: Del Negro, C., Cappello, A., Neri, M., Bilotta, G., Hérault, A., & Ganci, G. (2013). Lava flow hazards at Mount Etna: constraints imposed by eruptive history and numerical simulations. Scientific Reports, 3(1). https://doi.org/10.1038/srep03493

ASTER-derived land classification map of Fig. 3 overlain with effusion rate contours for the 2,000-m vent zone and the modified Guest and Murray (1979) vent zone (2011)
Figure 6 in: Harris, A. J., Favalli, M., Wright, R., & Garbeil, H. (2011). Hazard assessment at Mount Etna using a hybrid lava flow inundation model and satellite-based land classification. Natural Hazards, 58(3), 1001-1027. https://doi.org/10.1007/s11069-010-9709-0

FLOWGO simulation results when run from the 2,000-m vent zone, and the modified Guest and Murray (1979) vent zone. (2011)
Figure 2 in: Harris, A. J., Favalli, M., Wright, R., & Garbeil, H. (2011). Hazard assessment at Mount Etna using a hybrid lava flow inundation model and satellite-based land classification. Natural Hazards, 58(3), 1001-1027. https://doi.org/10.1007/s11069-010-9709-0

Map of the probability of lava flow inundation of Mount Etna from flank vents at elevations above 2000 m (2009)
Figure 5 in: Favalli, M., Mazzarini, F., Pareschi, M. T., & Boschi, E. (2009). Topographic control on lava flow paths at Mount Etna, Italy: implications for hazard assessment. Journal of Geophysical Research: Earth Surface, 114(F1). https://doi.org/10.1029/2007JF000918

Map of the probability of lava flow inundation of Mount Etna from flank vents at elevations above 2000 m calculated assuming a uniform probability of vent opening. (2009)
Figure 7 in: Favalli, M., Mazzarini, F., Pareschi, M. T., & Boschi, E. (2009). Topographic control on lava flow paths at Mount Etna, Italy: implications for hazard assessment. Journal of Geophysical Research: Earth Surface, 114(F1). https://doi.org/10.1029/2007JF000918

Map of the probability of lava flow inundation of the Mount Etna area by flank eruptions sourced according to the observed density of vent occurrences (2009)
Figure 4 in: Favalli, M., Mazzarini, F., Pareschi, M. T., & Boschi, E. (2009). Topographic control on lava flow paths at Mount Etna, Italy: implications for hazard assessment. Journal of Geophysical Research: Earth Surface, 114(F1). https://doi.org/10.1029/2007JF000918

Map of the probability of lava flow inundation of the Mount Etna area by new eruptions from vents opened at elevations above 3000 m (calculated using a uniform probability of vent opening) (2009)
Figure 6 in: Favalli, M., Mazzarini, F., Pareschi, M. T., & Boschi, E. (2009). Topographic control on lava flow paths at Mount Etna, Italy: implications for hazard assessment. Journal of Geophysical Research: Earth Surface, 114(F1). https://doi.org/10.1029/2007JF000918

Map of the vent opening probability (2009)
Figure 2 in: Favalli, M., Mazzarini, F., Pareschi, M. T., & Boschi, E. (2009). Topographic control on lava flow paths at Mount Etna, Italy: implications for hazard assessment. Journal of Geophysical Research: Earth Surface, 114(F1). https://doi.org/10.1029/2007JF000918

Map of volcano sectors likely to generate lava flows which may invade selected villages at the foot of Mount Etna. SC, summit craters; VDB, Valle del Bove (2009)
Figure 12 in: Favalli, M., Mazzarini, F., Pareschi, M. T., & Boschi, E. (2009). Topographic control on lava flow paths at Mount Etna, Italy: implications for hazard assessment. Journal of Geophysical Research: Earth Surface, 114(F1). https://doi.org/10.1029/2007JF000918

Hazard zones 1 (highest hazard) to 6 (lowest hazard, but highest vulnerability) based on the volcanological parameters of past eruptions, high vent density areas, and present day morphology (2005)
Figure 6 in: Behncke, B., Neri, M., & Nagay, A. (2005). Lava flow hazard at Mount Etna (Italy): new data from a GIS-based study. In: Manga, M. and Ventura, G. Kinematics and Dynamics of Lava Flows. Geological Society of America, Special Paper 396. https://doi.org/10.1130/0-8137-2396-5.189

The possible maximum extent of lava flows erupted from the outer edge of the area marked in Fig, 2 as having more than 1 vent per km² (1979)
Figure 3 in: Guest, J.E. & Murray, J.B. (1979). An analysis of hazard from Mount Etna volcano. Journal of the Geological Society, 136(3), p. 347-354. https://doi.org/10.1144/gsjgs.136.3.0347

Etorofu-Atosanupuri [Atosanupuri], Japan [VNUM = 290050]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Etorofu-Yakeyama [Grozny Group], Russia [VNUM = 290070]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Eyjafjallajökull, Iceland [VNUM = 372020]

Probability maps (%) for ground accumulation associated with a long-lasting 2010-type eruption of Eyjafjallajökull volcano (2014)
Figure 10 in: Biass, S., Scaini, C., Bonadonna, C., Folch, A., Smith, K., & Höskuldsson, A. (2014). A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes–Part 1: Hazard assessment. Natural hazards and earth system sciences, 14(8), 2265-2287. https://doi.org/10.5194/nhess-14-2265-2014

Mount Edgecumbe (Okataina), New Zealand [VNUM = 241050]

Volcanic hazard map of the Okataina Volcanic Centre (2010)
Figure 8 in: Becker, J.S., Saunders, W.S.A., Robertson, C.M., Leonard, G.S., & Johnston, D.M. (2010). A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. The Australasian Journal of Disaster and Trauma Studies, 2010-1. (Simplified from: Nairn, 2002)

Hazard zones defined at Okataina Volcanic Centre based on the effects of past eruptions (1993)
Figure 10 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology

Mount Emmons (Emmons Lake), United States [VNUM = 312020]

Hazard Zonation for Volcanic Gas (2006)
Figure 24 in: Waythomas, C.F., Miller, T.P. & Mangan, M.T. (2006). Preliminary volcano hazard assessment for the Emmons Lake Volcanic Center, Alaska. U.S. Geological Survey, Scientific Investigations Report 2006-5248, 33 p.