Browse Maps By Volcano

Select the first letter of volcano.
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Showing 28 volcanoes

Baekdusan (Changbaishan), China-North Korea [VNUM = 305060]

Affected areas from the LAHARZ simulation (2020)
Figure 7 in: Achmad, A.R., Lee, S., Park, S. Eom, J., & Lee, C.-W. (2020). Estimating the potential risk of the Mt. Baekdu Volcano using a synthetic interferogram and the LAHARZ inundation zone. Geosciences Journal. 24, 755–768. https://doi.org/10.1007/s12303-020-0032-9

Grades of Baekdu Mountain Volcano Disasters Risk (2020)
Figure 8 in: Xiao-Jiao, N., Choi, Y. S., & Ying, N. (2014). A Study on Integrated Assessment of Baekdu Mountain Volcanic Aisaster risk Based on GIS. Journal of Korea Spatial Information Society. Korea Spatial Information Society. https://doi.org/10.12672/ksis.2014.22.4.077

Grades of Tthe Hazard of The Factors of Inducing Baekdu Mountain Volcano Disasters (2020)
Figure 5 in: Xiao-Jiao, N., Choi, Y. S., & Ying, N. (2014). A Study on Integrated Assessment of Baekdu Mountain Volcanic Aisaster risk Based on GIS. Journal of Korea Spatial Information Society. Korea Spatial Information Society. https://doi.org/10.12672/ksis.2014.22.4.077

Index of The Hazard of The Factors of Inducing Baekdu Mountain Volcano Disaster (2020)
Figure 2 in: Xiao-Jiao, N., Choi, Y. S., & Ying, N. (2014). A Study on Integrated Assessment of Baekdu Mountain Volcanic Aisaster risk Based on GIS. Journal of Korea Spatial Information Society. Korea Spatial Information Society. https://doi.org/10.12672/ksis.2014.22.4.077

Probability map of invasion by PDCs in scenario 1 (2020)
Figure 5 in: Lombardi AM, Del Gaudio P, Guo Z, Zhang M, Liu G, Sepe V, Liu J, Ventura G. (2020). Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea). Applied Sciences, 10(7), 2622. https://doi.org/10.3390/app10072622

Probability map of invasion by PDCs in scenario 2 (2020)
Figure 6 in: Lombardi AM, Del Gaudio P, Guo Z, Zhang M, Liu G, Sepe V, Liu J, Ventura G. (2020). Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea). Applied Sciences, 10(7), 2622. https://doi.org/10.3390/app10072622

Probability map of invasion by PDCs in scenario 3 (2020)
Figure 7 in: Lombardi AM, Del Gaudio P, Guo Z, Zhang M, Liu G, Sepe V, Liu J, Ventura G. (2020). Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea). Applied Sciences, 10(7), 2622. https://doi.org/10.3390/app10072622

Probability map of invasion by PDCs in scenario 4 (2020)
Figure 8 in: Lombardi AM, Del Gaudio P, Guo Z, Zhang M, Liu G, Sepe V, Liu J, Ventura G. (2020). Scenario-Based Pyroclastic Density Current Invasion Maps at Poorly Known Volcanoes: A Case Study from Changbaishan (China/North Korea). Applied Sciences, 10(7), 2622. https://doi.org/10.3390/app10072622

Results of LAHARZ simulations of VEI (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, and (h) all VEIs (2020)
Figure 6 in: Achmad, A.R., Lee, S., Park, S. Eom, J., & Lee, C.-W. (2020). Estimating the potential risk of the Mt. Baekdu Volcano using a synthetic interferogram and the LAHARZ inundation zone. Geosciences Journal. 24, 755–768. https://doi.org/10.1007/s12303-020-0032-9

Result of Simulation 1 (2018)
Figure 4 in: Park, S.-J., & Lee, C.-W. (2018). Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ. Korean Journal of Remote Sensing, 34(1), 75–87. https://doi.org/10.7780/KJRS.2018.34.1.5

Result of Simulation 2 (2018)
Figure 6 in: Park, S.-J., & Lee, C.-W. (2018). Inundation Hazard Zone Created by Large Lahar Flow at the Baekdu Volcano Simulated using LAHARZ. Korean Journal of Remote Sensing, 34(1), 75–87. https://doi.org/10.7780/KJRS.2018.34.1.5

Inundation areas of lahar at the Amnok river and Duman river (2017)
Figure 5 in: Yun, S. H. & Chang, C. (2017). Prediction of Lahar Flow Inundation Areas Using LAHARZ_py Program: Application for the Mt. Baekdu Volcano. Economic and Environmental Geology, 50(4), 277-286. https://doi.org/10.9719/EEG.2017.50.4.277

Lahar-inundation hazard map constructed by applying Laharz_py program to the Mt. Baekdu volcano (2017)
Figure 3 in: Yun, S. H. & Chang, C. (2017). Prediction of Lahar Flow Inundation Areas Using LAHARZ_py Program: Application for the Mt. Baekdu Volcano. Economic and Environmental Geology, 50(4), 277-286. https://doi.org/10.9719/EEG.2017.50.4.277

Proximal hazard zone boundary (PHZB) with H/L ratios at the Mt. Baekdu (Baekdusan) (2017)
Figure 1 in: Yun, S. H. & Chang, C. (2017). Prediction of Lahar Flow Inundation Areas Using LAHARZ_py Program: Application for the Mt. Baekdu Volcano. Economic and Environmental Geology, 50(4), 277-286. https://doi.org/10.9719/EEG.2017.50.4.277

Possible area covered by a pyroclastic density current of the size of the 1668–1702 AD eruption. (2016)
Figure 18 in: Paone, A., & Yun, S. H. (2016). Pyroclastic density current hazards at the Baekdusan volcano, Korea: analyses of several scenarios from a small-case to the worst-case colossal eruption. In: Németh, K. (Ed.) Updates in Volcanology-From Volcano Modelling to Volcano Geology. IntechOpen. https://doi.org/10.5772/62340

Possible area covered by a pyroclastic density current of the size of the Millennium eruption (2016)
Figure 19 in: Paone, A., & Yun, S. H. (2016). Pyroclastic density current hazards at the Baekdusan volcano, Korea: analyses of several scenarios from a small-case to the worst-case colossal eruption. In: Németh, K. (Ed.) Updates in Volcanology-From Volcano Modelling to Volcano Geology. IntechOpen. https://doi.org/10.5772/62340

Bakening, Russia [VNUM = 300123]

Scheme of volcano-geographical zoning in Kamchatka (1962)
Figure 2 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Baker, United States [VNUM = 321010]

Tribal Lands and Volcano Hazards in the Pacific Northwest (2021)
Gardner, C.A. and Bard, J.A. (2021). How would a volcanic eruption affect your Tribe? U.S. Geological Survey General Information Product 209, https://doi.org/10.3133/gip209.

Mount Baker and Glacier Peak | Active Volcanoes. Are You Ready for An Eruption? (2014)
Washington Department of Natural Resources. (2014). Mount Baker and Glacier Peak, Active Volcanoes, Are You Ready for An Eruption? Mount Baker And Glacier Peak Combined Hazard Map. (Simplified from: Waitt et al. 1995 and Gardner et al. 1995)

Simplified volcano hazards map of Mount Baker, Washington (2014)
Gardner, C., Scott, K., Miller, C.D., Myers, B., Hildreth, W., Pringle, P.T., Driedger, C.L., Scott, W.E., Iverson, R.M., Ramsey, D.W., & Faust, L.M. (2014). Simplified volcano hazards map of Mount Baker, Washington. U.S. Geological Survey. Mount Baker, WA Simplified Hazards Map. https://www.usgs.gov/media/images/mount-baker-wa-simplified-hazards-map (Modified from: U.S. Geological Survey, Open-File Report 95-498)

Map showing one-year probability of accumulation of 1 centimeter (0.4 inch) or more of tephra from eruptions of volcanoes in the Cascade Range. (2013)
Nathensen, M. (2013). Map showing one-year probability of accumulation of 1 centimeter (0.4 inch) or more of tephra from eruptions of volcanoes in the Cascade Range. U.S. Geological Survey. Mount Bachelor Hazards. https://www.usgs.gov/volcanoes/mount-bachelor/hazards

Map showing annual probability of 1 centimeter or more of tephra accumulation from any major Cascade volcano (2012)
Figure 15 in: Clynne, M. A., Robinson, J. E., Nathenson, M. & Muffler, L. P. (2012). Volcano hazards assessment for the Lassen region, northern California. U.S. Geological Survey, Scientific Investigations Report 2012-5176-A, 47 p., 1 plate. https://doi.org/10.3133/sir20125176A

Preliminary probabilistic tephra-hazard map for Pacific Northwest (2011)
Figure 2 in: Hoblitt, R.P., & Scott, W.E. (2011). Estimate of tephra accumulation probabilities for the U.S. Department of Energy's Hanford Site, Washington. U.S. Geological Survey, Open-File Report 2011-1064, 15 p. https://doi.org/10.3133/ofr20111064

Map showing annual probability of 1 cm or more of tephra accumulation in Washington, Oregon, and northern California from eruptions throughout the Cascade Range. (1997)
Figure 4 in: Sherrod, D.R., Mastin, L.G., Scott, W.E. & Schilling, S.P. (1997). Volcano hazards at Newberry Volcano, Oregon. U.S. Geological Survey, Open-File Report 97-513, 14 p. https://doi.org/10.3133/ofr97513

Annual probability of 1 cm (about 0.4 inches) or more of tephra accumulation from any major Cascade volcano (1995)
Figure 5b in: Gardner, C.A., Scott, K.M., Miller, C.D., Myers, B., Hildreth, W., & Pringle, P.T. (1995). Potential volcanic hazards from future activity of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 95-498, 16 p., 1 plate, scale 1:100,000. https://doi.org/10.3133/ofr95498

Annual probability of 1 cm (about 0.4 inches) or more of tephra from Mount Baker. (1995)
Figure 5a in: Gardner, C.A., Scott, K.M., Miller, C.D., Myers, B., Hildreth, W., & Pringle, P.T. (1995). Potential volcanic hazards from future activity of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 95-498, 16 p., 1 plate, scale 1:100,000. https://doi.org/10.3133/ofr95498

Annual probability of accumulation of ten or more centimeters (four or more inches) of tephra in Washington and Oregon from eruptions throughout the Cascade Range. (1995)
Figure 3 in: Wolfe, E.W. & Pierson, T.C. (1995). Volcanic-Hazard Zonation for Mount St. Helens, Washington, 1995. U.S. Geological Survey, Open-File Report 95-497, 12 p., 1 plate. https://doi.org/10.3133/ofr95497

Hypothetical tephra distribution and thickness from a future eruptions of Mount Baker similar in size to the largest tephra producing event there (1995)
Figure 4 in: Gardner, C.A., Scott, K.M., Miller, C.D., Myers, B., Hildreth, W., & Pringle, P.T. (1995). Potential volcanic hazards from future activity of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 95-498, 16 p., 1 plate, scale 1:100,000. https://doi.org/10.3133/ofr95498

Potential Volcanic Hazards from Future Activity of Mount Baker, Washington (1995)
Plate 1 in: Gardner, C.A., Scott, K.M., Miller, C.D., Myers, B., Hildreth, W., & Pringle, P.T. (1995). Potential volcanic hazards from future activity of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 95-498, 16 p., 1 plate, scale 1:100,000. https://doi.org/10.3133/ofr95498

Contour map of the estimated annual probability of the accumulation of 1 cm or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 4 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Contour map of the estimated annual probability of the accumulation of 1 m or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 2 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Contour map of the estimated annual probability of the accumulation of 10 cm or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 3 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Volcanic-hazard zones in the Cascades Range (1987)
Plate 1 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Areas near Mount Baker that could be affected by lava and pyroclastic flows (shaded) and by ash clouds associated with pyroclastic flows (stippled; approximate limit shown by dashed line) (1978)
Figure 7 in: Hyde, J. & Crandell, D.R. (1978). Postglacial volcanic deposits at Mount Baker, Washington, and potential hazards from future eruptions. U.S. Geological Survey, Professional Paper 1022-C, C1-C17, 1 plate in pocket. https://doi.org/10.3133/pp1022C

Map Showing Areas of Potential Hazard from Tephra, Avalanches, Mudflows, and Floods in the Mount Baker Region, Washington (1978)
Plate 1 in: Hyde, J. & Crandell, D.R. (1978). Postglacial volcanic deposits at Mount Baker, Washington, and potential hazards from future eruptions. U.S. Geological Survey, Professional Paper 1022-C, C1-C17, 1 plate in pocket. https://doi.org/10.3133/pp1022C

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Areas which could be affected by lava flows and pyroclastic flows erupted from Mount Baker and by ash clouds associated with pyroclastic flows (1975)
Figure 3 in: Hyde, J.H. & Crandell, D.R. (1975). Origin and age of postglacial deposits and assessment of potential hazards from future eruptions of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 75-286, 22 p. https://doi.org/10.3133/ofr75286

Zones of relative risk from mudflows, floods, and tephra, in the Mount Baker region, Washington (1975)
Plate 1 in: Hyde, J.H. & Crandell, D.R. (1975). Origin and age of postglacial deposits and assessment of potential hazards from future eruptions of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 75-286, 22 p. https://doi.org/10.3133/ofr75286

Washington Geologic Information Portal - Volcanic Hazards (USGS) ([?])
Washington Department of Natural Resources. Geologic Information Portal.

Banahaw, Philippines [VNUM = 273050]

The Ready Project: Banahao Volcanic Complex Hazard Map of Laguna (2010)
Philippine Institute of Volcanology and Seismology – Department of Science and Technology (PHIVOLCS-DOST). 2010. The Ready Project: Banahao Volcanic Complex Hazard Map of Laguna. Province of Laguna, Region IV-A-Calabarzon. Hazards Mapping and Assessment for Effective Community-Based Disaster Risk Management (READY) Project

HazardHunterPH Banahaw ([?])
GeoRisk Philippines. HazardHunterPH.

Banda Api, Indonesia [VNUM = 265090]

Volcanic Hazard Map of Banda Api Volcano, Maluku Province (2008)
Kartadinata, M.N., Nursalim, A., Purwoto, & Sunarman. (2008). Volcanic Hazard Map of Banda Api Volcano, Maluku Province. Center for Volcanology and Geological Hazard Mitigation (CVGHM).

Bandaisan, Japan [VNUM = 283160]

Bandaisan Volcanic Alert Levels (2019)
Japan Meteorological Agency. (2019). Bandaisan Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Mt. Bandai Evacuation Routes Around the Crater Area (2019)
Bandaisan Volcanic Disaster Management Council. (2019). Mt. Bandai Evacuation Routes Around the Crater Area.

Mt. Bandai Evacuation Routes Around the Crater Area [Chinese version] (2019)
Bandaisan Volcanic Disaster Management Council. (2019). Mt. Bandai Evacuation Routes Around the Crater Area.

Mt. Bandai Evacuation Routes Around the Crater Area [English version] (2019)
Bandaisan Volcanic Disaster Management Council. (2019). Mt. Bandai Evacuation Routes Around the Crater Area.

Mt. Bandai Evacuation Routes Around the Crater Area [Korean version] (2019)
Bandaisan Volcanic Disaster Management Council. (2019). Mt. Bandai Evacuation Routes Around the Crater Area.

Preparation for hiking Mt. Bandai (2019)
Bandaisan Volcanic Disaster Management Council. (2019). Preparation for hiking Mt. Bandai.

Preparation for hiking Mt. Bandai [Chinese version] (2019)
Bandaisan Volcanic Disaster Management Council. (2019). Preparation for hiking Mt. Bandai.

Preparation for hiking Mt. Bandai [English version] (2019)
Bandaisan Volcanic Disaster Management Council. (2019). Preparation for hiking Mt. Bandai.

Preparation for hiking Mt. Bandai [Korean version] (2019)
Bandaisan Volcanic Disaster Management Council. (2019). Preparation for hiking Mt. Bandai.

Volcanic hazard map of Bandaisan (2017)
Volcano Disaster Management Councils of Bandaisan. (2017). Volcanic Hazard Map of Bandaisan.

Baransky (Sashiusudake [Baransky]), Russia [VNUM = 290080]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Barú, Panama [VNUM = 346010]

Amenaza Volcánica en el Volcán Barú, República de Panamá (2008)
Plate 1 (Spanish) in: Sherrod, D. R., Vallance, J. W., Espinosa, A. T., & McGeehin, J. P. (2007). Volcan Baru—eruptive history and volcano-hazards assessment. U.S. Geological Survey, Open-File Report, 2007-1401.

Volcano Hazards of Volcán Barú, Republic of Panamá (2008)
Plate 1 (English) in: Sherrod, D. R., Vallance, J. W., Espinosa, A. T., & McGeehin, J. P. (2007). Volcan Baru—eruptive history and volcano-hazards assessment. U.S. Geological Survey, Open-File Report, 2007-1401.

Barva, Costa Rica [VNUM = 345050]

Mapa de Reconocimiento de los Peligros Volcánicos de la Cordillera Volcánica Central de Costa Rica (1992)
Figure 2 in: Soto, G.J. & Paniagua, S. (1992). La Cordillera Volcánica Central (Costa Rica): sus peligros potenciales y prevenciones. Revista Geográfica de América Central, (25-26), 291-304.

Mapa de Reconocimiento de los Riesgos Volcanicos de la Cordillera Volcanic Central de Costa Rica (1986)
Page 9 in: Paniagua P., S. & Soto, G. (1986). Reconocimiento de los Riesgos Volcanicos Potentiales de la Cordillera Centra de Costa Rica, America Central. Ciencia y Tecnologia, 10 (2), p. 49-72, San Jose.

Bárðarbunga, Iceland [VNUM = 373030]

Areas closed to traffic and hazard areas after the volcanic eruption in Holuhraun and earthquakes in Bárðarbunga in Iceland (2015)
National Commisioner of the Icelandic Police. (2015). Press Release 16.03.2015 10:00 Regarding: Reduction of the access controlled area north of Vatnajökull.

Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun (2015)
Iceland Meteorological Office (IMO). (2015). Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun [Volcanic Eruption at Holuhraun 2014-2015 Probability of SO2 Contamination]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun (2015)
Iceland Meteorological Office (IMO). (2015). Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun [Volcanic Eruption at Holuhraun 2014-2015 Probability of SO2 Contamination]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu 13.02.2015 (2015)
Almannavarnir. (2015). Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu. 13.02.2015

Á litaða svæðinu eru líkur á gasmengun frá eldgosinu. Fim 18 Sep. (2014)
Iceland Meteorological Office (IMO). (2014). Á litaða svæðinu eru líkur á gasmengun frá eldgosinu. Fim 18 Sep.

Ástand fjallvega (2014)
Icelandic Road and Coastal Administration. (2014). Condition of mountain tracks. Map no. 30, valid from 25 August 2014.

Ástand fjallvega (2014)
Icelandic Road and Coastal Administration. (2014). Condition of mountain tracks. Map no. 31, valid from 2 September 2014.

Bláa svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir daginn í dag lau 20 Sep (2014)
Iceland Meteorological Office (IMO). (2014). Bláa svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir daginn í dag lau 20 Sep

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fim 30 okt (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fim 30 okt

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fös 12 des (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fös 12 des

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mán 27 okt (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mán 27 okt

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 15 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 15 okt.

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 22 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 22 okt.

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið þri 21 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið þri 21 okt.

Bleika svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir morgundaginn Sun 21 Sep (2014)
Iceland Meteorological Office (IMO). (2014). Bleika svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir morgundaginn Sun 21 Sep

Dæmi um verulegt sprengigos í Dyngjujökli, jafnþykktarlínur gjóskufalls (2014)
Kort Jarðvísindastofnun HÍ. (2014). Dæmi um verulegt sprengigos í Dyngjujökli, jafnþykktarlínur gjóskufalls.

Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar m.v. 50% líkur á styrk umfram þröskuldsgildi (2014)
Iceland Meteorological Office (IMO). (2014). Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar [Volcanic Eruption at Holuhraun 2014 Hazardous Area SO2 pollution]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar m.v. 90% líkur á styrk umfram þröskuldsgildi (2014)
Iceland Meteorological Office (IMO). (2014). Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar [Volcanic Eruption at Holuhraun 2014 Hazardous Area SO2 pollution]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 23 Okt 18:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 23 Okt 18:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 30 Okt 15:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 30 Okt 15:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 00:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 00:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 13:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 13:00

Jökulsá á Fjöllum Preliminary Flood Risk Assessment (2014)
Iceland Meteorological Office (IMO). (2014). Jökulsá á Fjöllum Preliminary Flood Risk Assessment.

Litaða svæðið sýnir líklega gasmengun á morgun, fimmtudaginn 18. september (2014)
Iceland Meteorological Office (IMO). (2014). Litaða svæðið sýnir líklega gasmengun á morgun, fimmtudaginn 18. september.

Litaða svæðið sýnir líklega gasmengun í miðvikudaginn 17. september (2014)
Iceland Meteorological Office (IMO). (2014). Litaða svæðið sýnir líklega gasmengun í miðvikudaginn 17. september.

Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu 17.10.2014 (2014)
Almannavarnir. (2014). Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu. 17.10.2014

Potential 1 km³ Lava Flows From Hypothetically Located Eruption Fissures Within The Tungná Fissure Swarm, South Central Iceland Rift Zone (1988)
Sheet 2 in: Imsland, P. (1988). Volcanic Hazard Map Series. Potential 1 km³ lava flows from hypothetically located eruption fissures within the Tungná Fissure Swarm, South Central Iceland Rift Zone (five sheets). 1:100,000. Nordic Volcanological Institute and National Power Company, Reykjavik. (Simplified from: Imsland. P., 1987. Volcanic Hazards Map: Potential Lawa Flows from hypothetically located Eruption Fissures within the Tungná Fissure Swarm. South Central Iceland Rift Zone. (six sheets in a 1:50,000 scale with 5 m contour interval).

Batur, Indonesia [VNUM = 264010]

Volcanic Hazard Map of Batur Volcano, Bali Province (2015)
Primulyana, S., & Bronto, S. (2015). Volcanic Hazard Map of Batur Volcano, Bali Province. Center for Volcanology and Geological Hazard Mitigation (CVGHM).

Berg (Kolokol Group), Russia [VNUM = 290120]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Berutarube (Berutarubesan [Berutarube]), Russia [VNUM = 290040]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Berutarubesan [Berutarube], Russia [VNUM = 290040]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Bezymianny, Russia [VNUM = 300250]

Scheme of volcano-geographical zoning in Kamchatka (1962)
Figure 2 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Big Pine Volcanic Field, United States [VNUM = 323823]

Potential Hazards from future volcanic eruptions in California (1989)
Plate 1 in: Miller, C.D. (1989). Potential hazards from future volcanic eruptions in California. U.S. Geological Survey, Bulletin 1847, 17 p., 2 tables, 1 plate, scale 1:500,000.

Black Butte Crater Lava Field, United States [VNUM = 324010]

Simulation outputs from MOLASSES (MOdular LAva Simulation Software for Earth Science) simulator (2018)
Figure 3 in: Gallant, E., Richardson, J., Connor, C., Wetmore, P., Connor, L. (2018). A new approach to probabilistic lava flow hazard assessments, applied to the Idaho National Laboratory, eastern Snake River Plain, Idaho, USA. Geology, 46 (10), p. 895–898. https://doi.org/10.1130/G45123.1

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Black Rock Desert, United States [VNUM = 327050]

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Blackfoot Lava Field, United States [VNUM = 324803]

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Bolshoi Semiachik, Russia [VNUM = 300150]

Scheme of volcano-geographical zoning in Kamchatka (1962)
Figure 2 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Brat Chirpoev (Chirpoi), Russia [VNUM = 290150]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Bromo (Tengger Caldera), Indonesia [VNUM = 263310]

Volcanic Hazard Map of Bromo Volcano, East Java Province (2015)
Primulyana, S., & Bronto, S. (2015). Volcanic Hazard Map of Bromo Volcano, East Java Province. Center for Volcanology and Geological Hazard Mitigation (CVGHM).

Bulusan, Philippines [VNUM = 273010]

Bulusan Volcano Danger Zones (2016)
Bornas, M.A.V., Rivera, D.J.V., Pidlaoan, A.C., Cahulogan, M.T., & Nadua, J.H. (2016). Bulusan Volcano Danger Zones Map. in: Volcanic Hazard Assessment for Bulusan Volcano. Internal Report, Philippine Institute of Volcanology and Seismology (PHIVOLCS)..

Bulusan Volcano Lahar Hazard Map (2016)
Rivera, D.J.V., Bornas, M.A.V., Pidlaoan, A.C., Cahulogan, M.T., & Nadua, J.H. (2016). Bulusan Volcano Lahar Hazard Map. in: Volcanic Hazard Assessment for Bulusan Volcano. Internal Report, Philippine Institute of Volcanology and Seismology (PHIVOLCS).

Bulusan Volcano Lava Hazard Map (2016)
Bornas, M.A.V., Rivera, D.J.V., Pidlaoan, A.C., Cahulogan, M.T., & Nadua, J.H. (2016). Bulusan Volcano Lava Flow Hazard Map. in: Volcanic Hazard Assessment for Bulusan Volcano. Internal Report, Philippine Institute of Volcanology and Seismology (PHIVOLCS).

Bulusan Volcano Pyroclastic Flow Hazard Map (2016)
Bornas, M.A.V., Rivera, D.J.V., Pidlaoan, A.C., Cahulogan, M.T., & Nadua, J.H. (2016). Bulusan Volcano Pyroclastic Density Current Hazard Map. in: Volcanic Hazard Assessment for Bulusan Volcano. Philippine Institute of Volcanology and Seismology (PHIVOLCS).

Bulusan Volcano Lahar Hazard Map (2007)
Philippine Institute of Volcanology and Seismology (PHIVOLCS). (2007). Bulusan Volcano Lahar Hazard Map.

Bulusan Volcano Lava Hazard Map (2000)
Philippine Institute of Volcanology and Seismology (PHIVOLCS). (2000). Bulusan Volcano Lava Hazard Map.

Bulusan Volcano Pyroclastic Flow Hazard Map (2000)
Philippine Institute of Volcanology and Seismology (PHIVOLCS). (2000). Bulusan Volcano Pyroclastic Flow Hazard Map.

HazardHunterPH Bulusan Volcano ([?])
GeoRisk Philippines. HazardHunterPH.

Cerro Bayo, Argentina [VNUM = 555970]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Cerro Blanco, Argentina [VNUM = 355210]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Cerro Bravo, Colombia [VNUM = 351012]

Mapa Preliminar de Amenaza Volcanica Volcan Cerro Bravo (1991)
Appendix 2 in: Monsalve, M.L. (1991). Mapa Preliminar de Amenaza Volcanica del Volcan Cerro Bravo. Instituto de Investigaciones en Geociencias Minera y Quimica (INGEOMINAS), 130 p.

Zonas Amenazadas por Flujos de Lodo del Volcan Cerro Bravo (1991)
Figure 43 in: Monsalve, M.L. (1991). Mapa Preliminar de Amenaza Volcanica del Volcan Cerro Bravo. Instituto de Investigaciones en Geociencias Minera y Quimica (INGEOMINAS), 130 p.

Zonas Amenazadas por Flujos Piroclasticos del Volcan Cerro Bravo (1991)
Figure 41 in: Monsalve, M.L. (1991). Mapa Preliminar de Amenaza Volcanica del Volcan Cerro Bravo. Instituto de Investigaciones en Geociencias Minera y Quimica (INGEOMINAS), 130 p.

Zonas Amenazadas por Flujos y Colapso de Flujos de Lava del Volcan Cerro Bravo (1991)
Figure 42 in: Monsalve, M.L. (1991). Mapa Preliminar de Amenaza Volcanica del Volcan Cerro Bravo. Instituto de Investigaciones en Geociencias Minera y Quimica (INGEOMINAS), 130 p.

Zonas Amenazadas por Piroclasticos de Caida y Proyectados Balisticamente Volcan Cerro Bravo (1991)
Figure 40 in: Monsalve, M.L. (1991). Mapa Preliminar de Amenaza Volcanica del Volcan Cerro Bravo. Instituto de Investigaciones en Geociencias Minera y Quimica (INGEOMINAS), 130 p.

Mapa de Amenaza Potencial Volcán Cerro Bravo ([?])
Servicio Geológico Colombiano (SGC). (Year Unknown). Mapa de amenaza potencial volcán Cerro Bravo. Volcán Cerro Bravo, Mapa de Amenaza. https://www2.sgc.gov.co/sgc/volcanes/VolcanCerroBravo/Paginas/mapa-de-amanaza.aspx

Monte Burney, Chile [VNUM = 358070]

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Negro de Barriales, Chile

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439