Browse Maps By Volcano

Select the first letter of volcano.
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Showing 27 volcanoes

Cerro Hudson, Chile [VNUM = 358057]

Peligros del Volcán Hudson (2014)
Amigo, A. & Bertin, D. (2014). Peligros del volcán Hudson, Región Aysén del General Carlos Ibáñez del Campo. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carta Geológica de Chile, Serie Geología Ambiental, 1 mapa escala 1:75.000. Santiago.

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Hachijojima, Japan [VNUM = 284050]

Hachijojima Volcanic Alert Levels (2018)
Japan Meteorological Agency. (2018). Hachijojima Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Hachijojima volcano hazard map (assumed crater position, volcanic blocks, pyroclastic surge) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Flank craters (base of volcano), 16 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Flank craters (base of volcano), 4 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Flank craters (base of volcano), 40 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava Flow: Flank craters (East-West Watershed) 16 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava Flow: Flank craters (East-West Watershed) 4 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava Flow: Flank craters (East-West Watershed) 40 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Flank craters (middle flank) 4 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Flank craters (middle flank) 40 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Flank craters (middle flank), 16 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Summit crater, 16 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Summit crater, 4 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima Volcano Hazard Map (Lava flow: Summit crater, 40 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima volcano hazard map (volcanic ash including volcanic lapilli: 16 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima volcano hazard map (volcanic ash including volcanic lapilli: 4 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hachijojima volcano hazard map (volcanic ash including volcanic lapilli: 40 million m³ DRE) (2017)
Hachijojima Volcano Disaster Prevention Council. (2017). Hachijojima volcano hazard map. Disaster Prevention Division, Bureau of General Affairs, Tokyo Metropolitan Government.

Hague (Emmons Lake), United States [VNUM = 312020]

Hazard Zonation for Volcanic Gas (2006)
Figure 24 in: Waythomas, C.F., Miller, T.P. & Mangan, M.T. (2006). Preliminary volcano hazard assessment for the Emmons Lake Volcanic Center, Alaska. U.S. Geological Survey, Scientific Investigations Report 2006-5248, 33 p.

Hakkodasan, Japan [VNUM = 283280]

Eruption impact area map of Mt. Hakkoda (Jigokunuma) (2019)
Figure 1-5 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Eruption impact area map of Mt. Hakkoda (Odake) (2019)
Figure 1-4 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Eruption impact area map of Mt. Hakkoda (Odake) (Enlarged view around crater) (2019)
Figure 1-3 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Hakkodasan (Jigokunuma crater) eruption warning regulation map (volcanic alert level 2) (2019)
Figure 3-2 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Hakkodasan (Odake Crater) Eruption Warning Area Map (Eruption Warning Level 4-5) (2019)
Figure 3-4 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Hakkodasan (Odake crater) eruption warning regulation map (volcanic alert level 2) (2019)
Figure 3-1 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Hakkodasan (Odake crater) eruption warning regulation map (volcanic alert level 3) (2019)
Figure 3-3 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Hakkodasan Volcanic Alert Levels (2019)
Japan Meteorological Agency. (2019). Hakkodasan Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Range of crater area regulation (Jigokunuma crater) (volcanic alert level 2) (2019)
Figure 1-8 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Range of crater area regulation (Odake crater) (volcanic alert level 2) (2019)
Figure 1-7 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Range of mountain climbing regulation (volcanic alert level 3) (2019)
Figure 1-9 in: Hakkodasan Volcanic Hazards Mitigation Committee. (2019). Hakkoda volcano evacuation plan. Aomori Prefecture, Aomori City, Towada City, Kuroishi City, and Hirakawa City.

Hakoneyama, Japan [VNUM = 283020]

Hakoneyama Volcanic Alert Levels (2017)
Japan Meteorological Agency. (2017). Hakoneyama Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Hakone-machi volcanic disaster prevention map whole area (2004)
Hakone-machi Town. (2004). Entire volcano disaster prevention map. Hakone Volcano Disaster Prevention Map. https://www.town.hakone.kanagawa.jp/index.cfm/10,1218,46,167,html

Steam explosion (2004)
Hakone-machi Town. (2004). When volcanic activity increases. Hakone Volcano Disaster Prevention Map. https://www.town.hakone.kanagawa.jp/index.cfm/10,1214,46,167,html

Volcanic gas fumarolic areas near Owakudani (2004)
Hakone-machi Town. (2004). Volcanic gas fumarolic area near Owakudani. Hakone Volcano Disaster Prevention Map. https://www.town.hakone.kanagawa.jp/index.cfm/10,1212,46,167,html

Volcanic gas fumarolic areas near Yunohanazawa (Ashinoyu) (2004)
Hakone-machi Town. (2004). Volcanic gas fumarolic zone near Yunohanazawa (Ashinoyu). Hakone Volcano Disaster Prevention Map. https://www.town.hakone.kanagawa.jp/index.cfm/10,1213,46,167,html

Hakusan, Japan [VNUM = 283050]

Hakusan Volcanic Disaster Prevention Map (2019)
Ishikawa Prefecture. (2019). Hakusan Volcanic Disaster Prevention Map.

Hakusan volcanic disaster prevention map (mobile version for climbers) (2018)
Gifu Prefecture Hakusan Volcano Disaster Prevention Council. (2018). Hakusan volcanic disaster prevention map (mobile version for climbers).

Hakusan Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Hakusan Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Haleakala, United States [VNUM = 332060]

Map of the eight main Hawaiian Islands, showing probability of future earthquake ground shaking (2014)
Figure 12 in: Kauahikaua, J.P. & Tilling, R.I. (2014). Natural hazards and risk reduction in Hawai‘i. In: Poland, M.P., Takahashi, T.J., & Landowski, C.M. (eds.) Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper 1801, p. 397-427. https://doi.org/10.3133/pp180110

Preliminary integrated lava flow hazards map for the State of Hawaii (2014)
Figure 4 in: Kauahikaua, J.P. & Tilling, R.I. (2014). Natural hazards and risk reduction in Hawai‘i. In: Poland, M.P., Takahashi, T.J., & Landowski, C.M. (eds.) Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper 1801, p. 397-427. https://doi.org/10.3133/pp180110

Lava inundation hazard map (2006)
Figure 8 in: Sherrod, D. R., Hagstrum, J. T., McGeehin, J. P., Champion, D. E., & Trusdell, F. A. (2006). Distribution, 14C chronology, and paleomagnetism of latest Pleistocene and Holocene lava flows at Haleakalā volcano, Island of Maui, Hawai ‘i: A revision of lava flow hazard zones. Journal of Geophysical Research: Solid Earth, 111(B5).

Ashfall-hazard zones on Haleakala Volcano, eastern Maui. (1987)
Figure 22.16 in: Mullineaux, D.R., Peterson, D.W., & Crandell, D.R. (1987). Volcanic hazards in the Hawaiian Islands. In: Decker, R.W., Wright, T.L., & Stauffer, P.H. (Eds.) Volcanism in Hawaii. US Geological Survey Professional Paper 1350, Chapter 22, p. 599-621. https://doi.org/10.3133/pp1350

Lava-flow hazard zones on Haleakala Volcano, eastern Maui. (1987)
Figure 22.14 in: Mullineaux, D.R., Peterson, D.W., & Crandell, D.R. (1987). Volcanic hazards in the Hawaiian Islands. In: Decker, R.W., Wright, T.L., & Stauffer, P.H. (Eds.) Volcanism in Hawaii. US Geological Survey Professional Paper 1350, Chapter 22, p. 599-621. https://doi.org/10.3133/pp1350

Potential Hazards from Future Volcanic Eruptions of the Island of Maui, Hawaii (1983)
Plate 1 in: Crandell, D.R. (1983). Potential hazards from future volcanic eruptions on the Island of Maui, Hawaii. U.S. Geological Survey, IMAP 1442. https://doi.org/10.3133/i1442

Haroharo (Okataina), New Zealand [VNUM = 241050]

Maps showing the average risk index (here, probability of accumulating ≥10 mm of ash × a Vc of 1.0) in the event of an initial Plinian phase of a rhyolitic Plinian eruption during peak season from the Tarawera LVZ for a fruit farms in the BoP (2017)
Figure 8 in: Thompson, M. A., Lindsay, J. M., Wilson, T. M., Biass, S., & Sandri, L. (2017). Quantifying risk to agriculture from volcanic ashfall: a case study from the Bay of Plenty, New Zealand. Natural Hazards, 86(1), 31-56. https://doi.org/10.1007/s11069-016-2672-7

BET_VH Node 8 maps showing the average conditional probability of accumulating ≥10 kg m−2 tephra given a single Plinian phase resulting from a a basaltic eruption from within the Tarawera LVZ; b a rhyolitic eruption from within the Tarawera LVZ; d a basaltic eruption from within the Haroharo LVZ; e a rhyolitic eruption from within the Haroharo LVZ; e a basaltic eruption from Ruawahia Dome, a single vent within the Tarawera LVZ (see star in Fig. 4); and f a rhyolitic eruption from Ruawahia Dome (2015)
Figure 8 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

BET_VH Node 8 outputs showing the average absolute probability of accumulating ≥10 kg m−2 of tephra in the next 1 year from a single Plinian phase resulting from a a basaltic eruption and b a rhyolitic eruption, from somewhere within the Tarawera LVZ (2015)
Figure 5 in: Thompson, M. A., Lindsay, J. M., Sandri, L., Biass, S., Bonadonna, C., Jolly, G., & Marzocchi, W. (2015). Exploring the influence of vent location and eruption style on tephra fall hazard from the Okataina Volcanic Centre, New Zealand. Bulletin of volcanology, 77(5), 38. https://doi.org/10.1007/s00445-015-0926-y

Volcanic hazard map of the Okataina Volcanic Centre (2010)
Figure 8 in: Becker, J.S., Saunders, W.S.A., Robertson, C.M., Leonard, G.S., & Johnston, D.M. (2010). A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. The Australasian Journal of Disaster and Trauma Studies, 2010-1. (Simplified from: Nairn, 2002)

Hazard zones defined at Okataina Volcanic Centre based on the effects of past eruptions (1993)
Figure 10 in: Nairn, I.A. (1993). Volcanic hazards at Okataina Centre. 3rd ed. Ministry of Civil Defence, Palmerston North, NZ. Volcanic hazards information series 2. 29 p. Reproduced on website: https://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/New-Zealand-Volcanoes/Volcano-Geology-and-Hazards/Okataina-Volcanic-Centre-Geology

Hayes, United States [VNUM = 313050]

Hazard zonation for directed blasts (2002)
Figure 17 in: Waythomas, C.F. & Miller, T.P. (2002). Preliminary volcano-hazard assessment for Hayes Volcano, Alaska. U.S. Geological Survey, Open-File Report 02-072, 33 p., 1 plate. https://doi.org/10.3133/ofr0272

Preliminary Volcano-Hazard Assessment for Mount Hayes Volcano, Alaska (2002)
Plate 1 in: Waythomas, C.F. & Miller, T.P. (2002). Preliminary volcano-hazard assessment for Hayes Volcano, Alaska. U.S. Geological Survey, Open-File Report 02-072, 33 p., 1 plate. https://doi.org/10.3133/ofr0272

Proximal and distal hazard zones at Hayes Volcano (2002)
Figure 8 in: Waythomas, C.F. & Miller, T.P. (2002). Preliminary volcano-hazard assessment for Hayes Volcano, Alaska. U.S. Geological Survey, Open-File Report 02-072, 33 p., 1 plate. https://doi.org/10.3133/ofr0272

Hekla, Iceland [VNUM = 372070]

Hekla - Vatnafjöll, tephra fall probability - After Larsen and Gíslason (2013) (2019)
Larsen, G. & Thordarson, T. (2019). Hekla. In: Oladottir, B., Larsen, G. & Guðmundsson, M. T. Catalogue of Icelandic Volcanoes. Iceland Meteorological Office (IMO), Univeristy of Iceland, and Civil Protection Department of the National Commissioner of the Iceland Police (CPD-NCIP). (Simplified from: Larsen & Gíslason 2013)

Tephra fall probabilities based on 18 historical Hekla eruptions (2019)
Larsen, G. & Thordarson, T. (2019). Hekla. In: Oladottir, B., Larsen, G. & Guðmundsson, M. T. Catalogue of Icelandic Volcanoes. Iceland Meteorological Office (IMO), Univeristy of Iceland, and Civil Protection Department of the National Commissioner of the Iceland Police (CPD-NCIP). https://icelandicvolcanos.is//index.html (Simplified from: Larsen & Gíslason 2013)

Atmospheric dispersion of tephra for a threshold of 2 mg m−3 for all FL for the eruption scenarios of Hekla ERS 1947-type (a, b, c), Katla LLERS (d, e, f) and Askja OES 1875-type (g, h, i) (2014)
Figure 13 in: Biass, S., Scaini, C., Bonadonna, C., Folch, A., Smith, K., & Höskuldsson, A. (2014). A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes–Part 1: Hazard assessment. Natural hazards and earth system sciences, 14(8), 2265-2287. https://doi.org/10.5194/nhess-14-2265-2014

Expected impacts of tephra dispersal on European airspace sectors (2014)
Figure 11 in: Scaini, C., Biass, S., Galderisi, A., Bonadonna, C., Folch, A., Smith, K., & Höskuldsson, A. (2014). A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes–Part 2: Vulnerability and impact. Natural hazards and earth system sciences, 14(8), 2289–2312. https://doi.org/10.5194/nhess-14-2289-2014

Probability maps (%) for ground accumulation for an eruption at Hekla (2014)
Figure 8 in: Biass, S., Scaini, C., Bonadonna, C., Folch, A., Smith, K., & Höskuldsson, A. (2014). A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes–Part 1: Hazard assessment. Natural hazards and earth system sciences, 14(8), 2265-2287. https://doi.org/10.5194/nhess-14-2265-2014

Hell's Half Acre, United States [VNUM = 324040]

Simulation outputs from MOLASSES (MOdular LAva Simulation Software for Earth Science) simulator (2018)
Figure 3 in: Gallant, E., Richardson, J., Connor, C., Wetmore, P., Connor, L. (2018). A new approach to probabilistic lava flow hazard assessments, applied to the Idaho National Laboratory, eastern Snake River Plain, Idaho, USA. Geology, 46 (10), p. 895–898. https://doi.org/10.1130/G45123.1

Ground Deformation Hazard Zone (2002)
Figure 7 in: Hackett, W.R., Smith, R.P., & Khericha, S. (2002). Volcanic hazards of the Idaho National Engineering and Environmental Laboratory, southeast Idaho. In: Bonnichsen, B., White, C.M., and McCurry, M. (eds.). Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province. Idaho Geological Survey Bulletin 30, p. 461-482.

Lava Flow Hazard Zones (2002)
Figure 5 in: Hackett, W.R., Smith, R.P., & Khericha, S. (2002). Volcanic hazards of the Idaho National Engineering and Environmental Laboratory, southeast Idaho. In: Bonnichsen, B., White, C.M., and McCurry, M. (eds.). Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province. Idaho Geological Survey Bulletin 30, p. 461-482.

Tephra and Gas Hazard Zone (2002)
Figure 6 in: Hackett, W.R., Smith, R.P., & Khericha, S. (2002). Volcanic hazards of the Idaho National Engineering and Environmental Laboratory, southeast Idaho. In: Bonnichsen, B., White, C.M., and McCurry, M. (eds.). Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province. Idaho Geological Survey Bulletin 30, p. 461-482.

Volcanic Source Zones Significant to the Central Facilities Area (CFA) (2002)
Figure 8 in: Hackett, W.R., Smith, R.P., & Khericha, S. (2002). Volcanic hazards of the Idaho National Engineering and Environmental Laboratory, southeast Idaho. In: Bonnichsen, B., White, C.M., and McCurry, M. (eds.). Tectonic and Magmatic Evolution of the Snake River Plain Volcanic Province. Idaho Geological Survey Bulletin 30, p. 461-482.

Ground Deformation Hazard Zone (1994)
Figure 10 in: Hackett, W.R. & Smith, R.P. (1994). Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas (No. INEL--94/0276). Lockheed Martin Idaho Technologies Co..

Lava flow hazard zone map of the INEL area (1994)
Figure 8 in: Hackett, W.R. & Smith, R.P. (1994). Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas (No. INEL--94/0276). Lockheed Martin Idaho Technologies Co..

Tephra and Gas Hazard Zone (1994)
Figure 9 in: Hackett, W.R. & Smith, R.P. (1994). Volcanic hazards of the Idaho National Engineering Laboratory and adjacent areas (No. INEL--94/0276). Lockheed Martin Idaho Technologies Co..

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Hibok Hibok (Camiguin), Philippines [VNUM = 271080]

Hazard Zonation Map for Airfall Tephra and Ballistic Projectiles (Hibok-Hibok Volcano) (1988)
Punongbayan, R.S. & Solidum, R.U. (1988). Hazard Zonation Map for Airfall Tephra and Ballistic Projectiles (Hibok-Hibok Volcano). Philippine Institute of Volcanology and Seismology – Department of Science and Technology (PHIVOLCS-DOST).

Hazard Zonation Map for Lahars and Floods (Hibok-Hibok Volcano) (1988)
Punongbayan, R.S. & Solidum, R.U. (1988). Hazard Zonation Map for Lahars and Floods (Hibok-Hibok Volcano). Philippine Institute of Volcanology and Seismology – Department of Science and Technology (PHIVOLCS-DOST).

Hazard Zonation Map for Lava Flows (Hibok-Hibok Volcano) (1988)
Punongbayan, R.S. & Solidum, R.U. (1988). Hazard Zonation Map for Lava Flows (Hibok-Hibok Volcano). Philippine Institute of Volcanology and Seismology – Department of Science and Technology (PHIVOLCS-DOST).

Hazard Zonation Map for Pyroclastic Flows and Lateral Blasts (Hibok-Hibok Volcano) (1988)
Punongbayan, R.S. & Solidum, R.U. (1988). Hazard Zonation Map for Pyroclastic Flows and Lateral Blasts (Hibok-Hibok Volcano). Philippine Institute of Volcanology and Seismology – Department of Science and Technology (PHIVOLCS-DOST).

Hierro, Canary Islands [Spain] [VNUM = 383020]

Ashfall scenarios from a violent Strombolian eruption performed with VORIS 2.0.1. (2014)
Figure 6 in: Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J. M., & Galindo, I. (2014). Long-term volcanic hazard assessment on El Hierro (Canary Islands). Natural Hazards and Earth System Sciences, 14(7), 1853-1870. https://doi.org/10.5194/nhess-14-1853-2014, 2014

Lava flow scenarios for El Hierro performed with VORIS 2.0.1 (2014)
Figure 4 in: Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J. M., & Galindo, I. (2014). Long-term volcanic hazard assessment on El Hierro (Canary Islands). Natural Hazards and Earth System Sciences, 14(7), 1853-1870. https://doi.org/10.5194/nhess-14-1853-2014, 2014

Onshore spatial probability distribution of future volcanic eruptions map of El Hierro Island (2014)
Figure 2 in: Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J. M., & Galindo, I. (2014). Long-term volcanic hazard assessment on El Hierro (Canary Islands). Natural Hazards and Earth System Sciences, 14(7), 1853-1870. https://doi.org/10.5194/nhess-14-1853-2014, 2014

PDC scenarios performed with VORIS 2.0.1 (2014)
Figure 5 in: Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J. M., & Galindo, I. (2014). Long-term volcanic hazard assessment on El Hierro (Canary Islands). Natural Hazards and Earth System Sciences, 14(7), 1853-1870. https://doi.org/10.5194/nhess-14-1853-2014, 2014

Superposition of the most probable scenarios; qualitative hazard map of El Hierro (zones 1–4) constructed from the combination of the most likely scenarios (2014)
Figure 7 in: Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J. M., & Galindo, I. (2014). Long-term volcanic hazard assessment on El Hierro (Canary Islands). Natural Hazards and Earth System Sciences, 14(7), 1853-1870. https://doi.org/10.5194/nhess-14-1853-2014, 2014

Susceptibility map of El Hierro Island (2013)
Figure 8 in: Becerril, L., Cappello, A., Galindo, I., Neri, M., & Del Negro, C. (2013). Spatial probability distribution of future volcanic eruptions at El Hierro Island (Canary Islands, Spain). Journal of Volcanology and Geothermal Research, 257, p. 21-30. https://doi.org/10.1016/j.jvolgeores.2013.03.005

Hokkaido-Komagatake, Japan [VNUM = 285020]

Nanae Town Eruption/Earthquake [Interactive Map] (2022)
Nanae Town. (2022). Nanae Town Eruption/Earthquake [Interactive Map]. http://www2.town.nanae.hokkaido.jp/bousai/hazardmap/map.html?lay=funka

Volcano Information (2020)
Nanae Town. (2020). Disaster Prevention Hazard Map for Nanae Town. https://www.town.nanae.hokkaido.jp/hotnews/detail/00009274.html

Hokkaido Komagatake Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Hokkaido Komagatake Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Volcanic eruption hazard area prediction map: Pyroclastic fall (2010)
Page 10 in: Volcano Disaster Management Councils of Mt.Komagatake. (2010). Volcanic disaster prevention handbook of Mt.Komagatake

Volcanic eruption hazard area prediction map: Pyroclastic flow (pumice flow)/pyroclastic surge (2010)
Page 11 in: Volcano Disaster Management Councils of Mt. Komagatake. (2010). Volcanic disaster prevention handbook of Mt.Komagatake

Volcanic eruption hazard area prediction map: Volcanic mudlfow, debris flow/debris avalanche (2010)
Page 12 in: Volcano Disaster Management Councils of Mt. Komagatake. (2010). Volcanic disaster prevention handbook of Mt.Komagatake

Komagatake Hazard Map ([?])
Nanae Town. Nanae Town Disaster Prevention Guide Map.

Holuhraun (Askja), Iceland [VNUM = 373060]

Early simulations carried out before the onset of the effusive eruption (2019)
Figure 4 in: Tarquini, S., de'Michieli Vitturi, M., Jensen, E. H., Pedersen, G. B., Barsotti, S., Coppola, D., & Pfeffer, M. A. (2018). Modeling lava flow propagation over a flat landscape by using MrLavaLoba: the case of the 2014–2015 eruption at Holuhraun, Iceland. Annals of Geophysics. https://doi.org/10.4401/ag-7812

Areas closed to traffic and hazard areas after the volcanic eruption in Holuhraun and earthquakes in Bárðarbunga in Iceland (2015)
National Commisioner of the Icelandic Police. (2015). Press Release 16.03.2015 10:00 Regarding: Reduction of the access controlled area north of Vatnajökull.

Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun (2015)
Iceland Meteorological Office (IMO). (2015). Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun [Volcanic Eruption at Holuhraun 2014-2015 Probability of SO2 Contamination]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun (2015)
Iceland Meteorological Office (IMO). (2015). Eldgos í Holuhrauni 2014-2015 Líkur á SO2 Mengun [Volcanic Eruption at Holuhraun 2014-2015 Probability of SO2 Contamination]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu 13.02.2015 (2015)
Almannavarnir. (2015). Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu. 13.02.2015

Á litaða svæðinu eru líkur á gasmengun frá eldgosinu. Fim 18 Sep. (2014)
Iceland Meteorological Office (IMO). (2014). Á litaða svæðinu eru líkur á gasmengun frá eldgosinu. Fim 18 Sep.

Ástand fjallvega (2014)
Icelandic Road and Coastal Administration. (2014). Condition of mountain tracks. Map no. 30, valid from 25 August 2014.

Ástand fjallvega (2014)
Icelandic Road and Coastal Administration. (2014). Condition of mountain tracks. Map no. 31, valid from 2 September 2014.

Bláa svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir daginn í dag lau 20 Sep (2014)
Iceland Meteorological Office (IMO). (2014). Bláa svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir daginn í dag lau 20 Sep

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fim 30 okt (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fim 30 okt

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fös 12 des (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir fös 12 des

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mán 27 okt (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mán 27 okt

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 15 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 15 okt.

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 22 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið 22 okt.

Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið þri 21 okt. (2014)
Iceland Meteorological Office (IMO). (2014). Blágræna svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir mið þri 21 okt.

Bleika svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir morgundaginn Sun 21 Sep (2014)
Iceland Meteorological Office (IMO). (2014). Bleika svæðið sýnir hvar líkur eru á gasmengun frá eldgosinu fyrir morgundaginn Sun 21 Sep

Dæmi um verulegt sprengigos í Dyngjujökli, jafnþykktarlínur gjóskufalls (2014)
Kort Jarðvísindastofnun HÍ. (2014). Dæmi um verulegt sprengigos í Dyngjujökli, jafnþykktarlínur gjóskufalls.

Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar m.v. 50% líkur á styrk umfram þröskuldsgildi (2014)
Iceland Meteorological Office (IMO). (2014). Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar [Volcanic Eruption at Holuhraun 2014 Hazardous Area SO2 pollution]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar m.v. 90% líkur á styrk umfram þröskuldsgildi (2014)
Iceland Meteorological Office (IMO). (2014). Eldgos í Holuhrauni 2014 Hættusvæði v. SO2 Mengunar [Volcanic Eruption at Holuhraun 2014 Hazardous Area SO2 pollution]. (Reprinted in: Barsotti, S. (2015). Hazard Zoning: Probabilistic hazard maps of SO2 ground concentration for Holuhraun eruption. https://en.vedur.is/pollution-and-radiation/volcanic-gas/hazard-zoning/)

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 23 Okt 18:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 23 Okt 18:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 30 Okt 15:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fim 30 Okt 15:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 00:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 00:00

Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 13:00 (2014)
Iceland Meteorological Office (IMO). (2014). Gasdreifingarspá. Magn SO2 í andrúmslofti við yfirborð. Fös 19 Sept 13:00

Jökulsá á Fjöllum Preliminary Flood Risk Assessment (2014)
Iceland Meteorological Office (IMO). (2014). Jökulsá á Fjöllum Preliminary Flood Risk Assessment.

Litaða svæðið sýnir líklega gasmengun á morgun, fimmtudaginn 18. september (2014)
Iceland Meteorological Office (IMO). (2014). Litaða svæðið sýnir líklega gasmengun á morgun, fimmtudaginn 18. september.

Litaða svæðið sýnir líklega gasmengun í miðvikudaginn 17. september (2014)
Iceland Meteorological Office (IMO). (2014). Litaða svæðið sýnir líklega gasmengun í miðvikudaginn 17. september.

Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu 17.10.2014 (2014)
Almannavarnir. (2014). Lokunarsvæði og hættusvæði vegna eldgoss í Holuhrauni og jarðhræringa í Bárðarbungu. 17.10.2014

Hombre Muerto, Argentina

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Hood, United States [VNUM = 322010]

Tribal Lands and Volcano Hazards in the Pacific Northwest (2021)
Gardner, C.A. and Bard, J.A. (2021). How would a volcanic eruption affect your Tribe? U.S. Geological Survey General Information Product 209, https://doi.org/10.3133/gip209.

Estimated Travel Time of Mudflows at Mount Hood, Oregon (2015)
Preppernau, C. A., & Jenny, B. (2016). Estimated travel time of mudflows at Mount Hood, Oregon. Journal of Maps, 12(5), p. 711-715. https://doi.org/10.1080/17445647.2015.1120244

Simplified volcano hazards map of Mount Hood, Oregon (2014)
Scott, W.E., Pierson, T.C., Schilling, S.P., Costa, J.E., Gardner, C.A., Vallance, J.W., Major, J.J., Driedger, C.L., Iverson, R.M., Ramsey, D.W., & Faust, L.M. (2014). Simplified volcano hazards map of Mount Hood, Oregon. U.S. Geological Survey. Mount Hood, OR Simplified Hazards Map. https://www.usgs.gov/media/images/mount-hood-or-simplified-hazards-map (Modified from: U.S. Geological Survey, Open-File Report 97-89)

Map showing one-year probability of accumulation of 1 centimeter (0.4 inch) or more of tephra from eruptions of volcanoes in the Cascade Range. (2013)
Nathensen, M. (2013). Map showing one-year probability of accumulation of 1 centimeter (0.4 inch) or more of tephra from eruptions of volcanoes in the Cascade Range. U.S. Geological Survey. Mount Bachelor Hazards. https://www.usgs.gov/volcanoes/mount-bachelor/hazards

Map showing annual probability of 1 centimeter or more of tephra accumulation from any major Cascade volcano (2012)
Figure 15 in: Clynne, M. A., Robinson, J. E., Nathenson, M. & Muffler, L. P. (2012). Volcano hazards assessment for the Lassen region, northern California. U.S. Geological Survey, Scientific Investigations Report 2012-5176-A, 47 p., 1 plate. https://doi.org/10.3133/sir20125176A

Oregon HazVu: Statewise Geohazards Viewer (2012)
Oregon Department of Geology and Moneral Industries (DOGAMI). (2012). Oregon HazVu: Statewide Geohazards Viewer.

Preliminary probabilistic tephra-hazard map for Pacific Northwest (2011)
Figure 2 in: Hoblitt, R.P., & Scott, W.E. (2011). Estimate of tephra accumulation probabilities for the U.S. Department of Energy's Hanford Site, Washington. U.S. Geological Survey, Open-File Report 2011-1064, 15 p. https://doi.org/10.3133/ofr20111064

Are You at Risk from the Next Eruption of Mount Hood? Hazards Zonation Map (2000)
Gardner, C. A., Scott, W. E., Major, J. J., & Pierson, T. C. (2000). Mount Hood-history and hazards of Oregon's most recently active volcano. US Geological Survey, Fact Sheet 060-00 (PDF Version). https://doi.org/10.3133/fs06000

Hazards Zonation Map (2000)
Gardner, C.A., Scott, W.E., Major, J.J., & Pierson, T.C. (2000). Hazards Zonation Map. Mount Hood—History and Hazards of Oregon's Most Recently Active Volcano. U.S. Geological Survey, Fact Sheet 060-00 (Online Version 1.0). https://doi.org/10.3133/fs06000

Map showing annual probability of 1 cm or more of tephra accumulation in Washington, Oregon, and northern California from eruptions throughout the Cascade Range. (1997)
Figure 4 in: Sherrod, D.R., Mastin, L.G., Scott, W.E. & Schilling, S.P. (1997). Volcano hazards at Newberry Volcano, Oregon. U.S. Geological Survey, Open-File Report 97-513, 14 p. https://doi.org/10.3133/ofr97513

Volcano Hazards in the Mount Hood Region, Oregon (1997)
Plate Of1997 in: Scott, W.E., Pierson, T., Schilling, S.P., Costa, J., Gardner, C., Vallance, J.W. & Major, J. (1997). Volcano hazards in the Mount Hood region, Oregon. U.S. Geological Survey, Open-File Report 97-89, 14 p., 1 map. https://doi.org/10.3133/ofr9789

Annual probability of 1 cm (about 0.4 inches) or more of tephra accumulation from any major Cascade volcano (1995)
Figure 5b in: Gardner, C.A., Scott, K.M., Miller, C.D., Myers, B., Hildreth, W., & Pringle, P.T. (1995). Potential volcanic hazards from future activity of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 95-498, 16 p., 1 plate, scale 1:100,000. https://doi.org/10.3133/ofr95498

Annual probability of accumulation of ten or more centimeters (four or more inches) of tephra in Washington and Oregon from eruptions throughout the Cascade Range. (1995)
Figure 3 in: Wolfe, E.W. & Pierson, T.C. (1995). Volcanic-Hazard Zonation for Mount St. Helens, Washington, 1995. U.S. Geological Survey, Open-File Report 95-497, 12 p., 1 plate. https://doi.org/10.3133/ofr95497

Contour map of the estimated annual probability of the accumulation of 1 cm or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 4 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Contour map of the estimated annual probability of the accumulation of 1 m or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 2 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Contour map of the estimated annual probability of the accumulation of 10 cm or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 3 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Volcanic-hazard zones in the Cascades Range (1987)
Plate 1 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Areas of Potential Hazard from Future Pyroclastic Flows, Ash Clouds, Mudflows, and Lateral Blasts at Mount Hood, Oregon (1980)
Plate 1 in: Crandell, D.R. (1980). Recent eruptive history of Mount Hood, Oregon, and potential hazards from future eruptions. U.S. Geological Survey, Bulletin 1492, 81 p. https://doi.org/10.3133/b1492

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Hornopirén, Chile [VNUM = 358023]

Peligros del Volcán Hornopirén, Región de Los Lagos (2021)
Mella, M., Toloza, V., and Bertin, L. (2021). Peligros del volcán Hornopirén, región de Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 37: 51 p., 1 mapa escala 1:50.000. Santiago.

Zonificación de peligro por corrientes de densidad piroclásticas del volcán Hornopirén (2021)
Figure 12 in: Mella, M., Toloza, V., and Bertin, L. (2021). Peligros del volcán Hornopirén, región de Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 37: 51 p., 1 mapa escala 1:50.000. Santiago.

Zonificación de peligro por lahares del volcán Hornopirén (2021)
Figure 13 in: Mella, M., Toloza, V., and Bertin, L. (2021). Peligros del volcán Hornopirén, región de Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 37: 51 p., 1 mapa escala 1:50.000. Santiago.

Zonificación de peligro por lavas del volcán Hornopirén (2021)
Figure 11 in: Mella, M., Toloza, V., and Bertin, L. (2021). Peligros del volcán Hornopirén, región de Los Lagos. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Ambiental 37: 51 p., 1 mapa escala 1:50.000. Santiago.

Mapa Preliminar de Peligros del Volcán Hornopirén (2013)
Mella, M. (2013). Mapa Preliminar de Peligros del Volcán Hornopirén, Región de los Lagos. Subdirección Nacional de Geología, Programa de Riesgo Volcánico, mapa escala 1:50,000. Santiago.

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Hoshozan (Kujusan), Japan [VNUM = 282120]

Volcanic disaster prevention map of Kujusan volcano (2013)
Oita Prefecture, Yufu City, Takeda City & Kokonoe Town. (2013). Volcanic disaster prevention map of Kujusan volcano.

Kuju Mountain Volcano Disaster Prevention Map (2004)
Oita Prefecture, Yufu City, Taketa City, Kokonoe Town. (2004). Kuju Mountain Volcano Disaster Prevention Map.

Hualalai, United States [VNUM = 332040]

Map depicting the numbered hazard zones 1 to 4 for ground fractures and “small-scale” subsidence for the Island of Hawai‘i (2014)
Figure 15 in: Kauahikaua, J.P. & Tilling, R.I. (2014). Natural hazards and risk reduction in Hawai‘i. In: Poland, M.P., Takahashi, T.J., & Landowski, C.M. (eds.) Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper 1801, p. 397-427. https://doi.org/10.3133/pp180110

Map of the eight main Hawaiian Islands, showing probability of future earthquake ground shaking (2014)
Figure 12 in: Kauahikaua, J.P. & Tilling, R.I. (2014). Natural hazards and risk reduction in Hawai‘i. In: Poland, M.P., Takahashi, T.J., & Landowski, C.M. (eds.) Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper 1801, p. 397-427. https://doi.org/10.3133/pp180110

Preliminary integrated lava flow hazards map for the State of Hawaii (2014)
Figure 4 in: Kauahikaua, J.P. & Tilling, R.I. (2014). Natural hazards and risk reduction in Hawai‘i. In: Poland, M.P., Takahashi, T.J., & Landowski, C.M. (eds.) Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper 1801, p. 397-427. https://doi.org/10.3133/pp180110

Shaded relief map showing tephra hazard zones on the Island of Hawai‘i (2014)
Figure 8 in: Kauahikaua, J.P. & Tilling, R.I. (2014). Natural hazards and risk reduction in Hawai‘i. In: Poland, M.P., Takahashi, T.J., & Landowski, C.M. (eds.) Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper 1801, p. 397-427. https://doi.org/10.3133/pp180110

Lava flow inundation hazard zones for Hawai‘i shown with colors indicating increasing hazard (adapted from Heliker 1990; Wright et al. 1992). Superimposed on hazard zones are channel-length contours from Fig. 4 (dashed color lines). (2005)
Figure 5 in: Rowland, S. K., Garbeil, H., & Harris, A. J. (2005). Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai ‘i, determined from thermal and downslope modeling with FLOWGO. Bulletin of Volcanology, 67(7), 634-647. https://doi.org/10.1007/s00445-004-0399-x

Hazard zones for lava flows on Hualalai (1997)
Page 30 in: U.S. Geological Survey (USGS). (1997). Volcanic and Seismic Hazards on the Island of Hawaii. U.S. Geological Survey, Unumbered Series, 48 p. https://doi.org/10.3133/7000036 (Simplified from: Wright 1992)

The Island of Hawaii is divided into zones according to the degree of hazards from lava flows (1997)
Page 22 in: U.S. Geological Survey (USGS). (1997). Volcanic and Seismic Hazards on the Island of Hawaii. U.S. Geological Survey, Unumbered Series, 48 p. https://doi.org/10.3133/7000036 (Simplified from: Wright 1992)

Lava Flow Hazard Zones (1994)
Figure 2 in: Kauahikaua, J. P., Moore, R. B., & Delaney, P. (1994). Volcanic activity and ground deformation hazard analysis for the Hawaii geothermal project environmental impact statement. US Geological Survey, Open File Report 94-553. 44 p. https://doi.org/10.3133/ofr94553 (Modified from: Wright et al. 1992)

Map Showing Lava-Flow Hazard Zones, Island of Hawaii (1992)
Wright, T.L., Chun, J.Y.F., Exposo, J., Heliker, C., Hodge, J., Lockwood, J.P., & Vogt, S.M. (1992). Map showing lava-flow hazard zones, Island of Hawaii. U.S. Geological Survey, Miscellaneous Field Studies Map 2193, scale 1:250,000. https://doi.org/10.3133/mf2193

Hazard zones for ground fractures and subsidence on the Island of Hawaii (1987)
Figure 22.12 in: Mullineaux, D.R., Peterson, D.W., & Crandell, D.R. (1987). Volcanic hazards in the Hawaiian Islands. In: Decker, R.W., Wright, T.L., & Stauffer, P.H. (Eds.) Volcanism in Hawaii. US Geological Survey Professional Paper 1350, Chapter 22, p. 599-621. https://doi.org/10.3133/pp1350

Hazard zones for lava flows on the Island of Hawaii (1987)
Figure 22.10 in: Mullineaux, D.R., Peterson, D.W., & Crandell, D.R. (1987). Volcanic hazards in the Hawaiian Islands. In: Decker, R.W., Wright, T.L., & Stauffer, P.H. (Eds.) Volcanism in Hawaii. US Geological Survey Professional Paper 1350, Chapter 22, p. 599-621. https://doi.org/10.3133/pp1350

Hazard zones for tephra on the Island of Hawaii (1987)
Figure 22.11 in: Mullineaux, D.R., Peterson, D.W., & Crandell, D.R. (1987). Volcanic hazards in the Hawaiian Islands. In: Decker, R.W., Wright, T.L., & Stauffer, P.H. (Eds.) Volcanism in Hawaii. US Geological Survey Professional Paper 1350, Chapter 22, p. 599-621. https://doi.org/10.3133/pp1350

General areas of high (H), medium (M), and low (L) risk from surface ruptures (1974)
Figure 14 in: Mullineaux, D.R. & Peterson, D.W. (1974). Volcanic hazards on the Island of Hawaii. U.S. Geological Survey, Open-File Report 74-239. https://doi.org/10.3133/ofr74239

Map of Zones of Overall Relative Risk From Volcanic Hazards, Island of Hawaii (1974)
Plate 1 in: Mullineaux, D.R. & Peterson, D.W. (1974). Volcanic hazards on the Island of Hawaii. U.S. Geological Survey, Open-File Report 74-239. https://doi.org/10.3133/ofr74239

Volcano rift and shoreline zones subject to relatively high risk from subsidence (cross hachured) (1974)
Figure 12 in: Mullineaux, D.R. & Peterson, D.W. (1974). Volcanic hazards on the Island of Hawaii. U.S. Geological Survey, Open-File Report 74-239. https://doi.org/10.3133/ofr74239

Zones of overall relative risk from volcanic hazards. Risk increases from "A" through "F" (1974)
Figure 15 in: Mullineaux, D.R. & Peterson, D.W. (1974). Volcanic hazards on the Island of Hawaii. U.S. Geological Survey, Open-File Report 74-239. https://doi.org/10.3133/ofr74239

Zones of relative risk from falling volcanic fragments (1974)
Figure 10 in: Mullineaux, D.R. & Peterson, D.W. (1974). Volcanic hazards on the Island of Hawaii. U.S. Geological Survey, Open-File Report 74-239. https://doi.org/10.3133/ofr74239

Zones of relative risk from lava-flow burial (1974)
Figure 9 in: Mullineaux, D.R. & Peterson, D.W. (1974). Volcanic hazards on the Island of Hawaii. U.S. Geological Survey, Open-File Report 74-239. https://doi.org/10.3133/ofr74239

Index of lava flow incidence per 10,000 years past per square mile (1940)
Figure 2 (in reprint) in: Hawaiian Volcano Observatory. (1940s or 1950s). Index of lava flow incidence per 10,000 years past per square mile. (Reprinted in: Kauahikaua, J.P. & Tilling, R.I. (2014). Natural hazards and risk reduction in Hawai‘i. In: Poland, M.P., Takahashi, T.J., & Landowski, C.M. (eds.) Characteristics of Hawaiian Volcanoes. US Geological Survey Professional Paper 1801, p. 397-427. https://doi.org/10.3133/pp180110)

Huanipaco, Peru

Mapa Preliminar de Zonificación de Peligros Volcanicos - Sur del Perú (2003)
Comisión Multisectorial de Reducción de Riesgos en el Desarrollo (CMRRD) & Dirección General de Programación Multianual del Sector Público - MEF (DGPM) (2003). Mapa preliminar de zonificación de peligros volcánicos - Sur del Perú. Estrategía Nacional de Reducción de Riesgos para el Desarrollo. Escala 1:3000000

Huarmi Imbabura (Imbabura), Ecuador [VNUM = 352004]

Mapa de los Peligros Volcánicos Potenciales Asociados con los Volcanes Huarmi Imbabura y Taita Imbabura (1991)
von Hillebrandt, C.G., Beate, B., & Hall, M.L. (1991). Mapa de los Peligros Volcánicos Potenciales Asociados con los Volcanes Huarmi Imbabura y Taita Imbabura. Instituto Geofisico de la Escuela Politecnica Nacional (IG-EPN), mapa escala 1:50.000.

Huaynaputina, Peru [VNUM = 354030]

Mapa Preliminar de Zonificación de Peligros Volcanicos - Sur del Perú (2003)
Comisión Multisectorial de Reducción de Riesgos en el Desarrollo (CMRRD) & Dirección General de Programación Multianual del Sector Público - MEF (DGPM) (2003). Mapa preliminar de zonificación de peligros volcánicos - Sur del Perú. Estrategía Nacional de Reducción de Riesgos para el Desarrollo. Escala 1:3000000

Huequi, Chile [VNUM = 358030]

Peligros Volcánicos del Volcán Huequi (2013)
Bucchi, F. & Lara, L., (2013). Mapa Preliminar de Peligros Volcánicos Volcán Huqeui. Región de Los Lagos. Informe inédito, Subdirección Nacional de Geología, Programa de Riesgo Volcánico, mapa escala 1:50.000. Santiago.

Peligros Volcanicos de Chile (2011)
Lara, L.E., Orozco G., Amigo A. & Silva C. (2011). Peligros Volcanicos de Chile. Servicio Nacional de Geología y Minería (SERNAGEOMIN), Carte Geologica de Chile, Serie Geologia Ambiental, No. 13: 34 p., 1 mapa escala 1:2.000.000. Santiago.

Hunga Tonga-Hunga Ha'apai, Tonga [VNUM = 243040]

Volcanic Hazard Map for the Hunga Volcano 2021 (2022)
Figure 3 in: Tonga Geological Services. (2022). Volcanic Hazard Map for the Hunga Volcano 2021. Facebook post 2022-01-03. https://www.facebook.com/tongageologicalservice/posts/228114139479654.

Las Hoyadas (Infiernillo), Argentina [VNUM = 357041]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Nevado del Huila, Colombia [VNUM = 351050]

Actualización de Escenarios de Amenaza por Flujos de Lodo Volcánico (Lahares) Originados por el Volcán Nevado del Huila Sobre los Cauces de los Ríos Páez y Símbola (2020)
Servicio Geológico Colombiano (SGC). Amenaza Huila.

Mapa de Amenazas del Complejo Volcánico del Nevado del Huila (2007)
Instituto Colombiano de Geología y Minería (INGEOMINAS). (2007). Mapa de Amenazas del Complejo Volcánico del Nevado del Huila. escala 1:100,000.

Complejo Volcanico Nevado del Huila Mapa de Amenaza por Flujos de Lodo Sector Toez - Aranzazu (1996)
Anexo 2 in: Instituto Colombiano de Geología y Minería (INGEOMINAS). (1996). Evaluación de Amenaza y Vigilancia Volcánica del Complejo Volcánico Nevado del Huila. Popayan.

Mapa de Amenaza Volcánica (1996)
Anexo 1 in: Instituto Colombiano de Geología y Minería (INGEOMINAS). (1996). Evaluación de Amenaza y Vigilancia Volcánica del Complejo Volcánico Nevado del Huila. Popayan.

Mapa Preliminar de Riesgos Volcánicos Potenciales del Nevado del Huila, mapa escala 1:200,000 (1986)
Plate 1 in: Cepeda, H., Méndez, R., Murcio, A., & Vergara, H. (1986). Mapa Preliminar de Riesgos Volcanicos Potenciales del Nevado del Huila. Instituto Colombiano de Geología y Minería (INGEOMINAS). Medellín.

Mapa Preliminar de Riesgos Volcánicos Potenciales del Nevado del Huila, mapa escala 1:50,000 (1986)
Plate 2 in: Cepeda, H., Méndez, R., Murcio, A., & Vergara, H. (1986). Mapa Preliminar de Riesgos Volcanicos Potenciales del Nevado del Huila. Instituto Colombiano de Geología y Minería (INGEOMINAS). Medellín.

Amenaza Huila ([?])
Servicio Geológico Colombiano (SGC). Amenaza Huila.