Browse Maps By Volcano

Select the first letter of volcano.
A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Showing 20 volcanoes

Cerro Negro, Nicaragua [VNUM = 344070]

Mapa de amenaza determinista por caída de cenizas [m] en el volcán Cerro Negro (2009)
Figure 6-13 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Mapa de amenaza determinista por flujos de lava en el volcán Cerro Negro (2009)
Figure 6-11 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Mapa de amenaza determinista por flujos piroclásticos en el volcán Cerro Negro (2009)
Figure 6-12 in: CAPRA Probabilistic Risk Assessment Initiative. Nicaragua - Tomo I Metodología De Modelación Probabilista De Riesgos Naturales. Informe Técnico ERN-CAPRA-t2-3 Modelación Probabilista De Amenazas Naturales.

Volcán Cerro Negro caída de cenizas (2009)
Figure 11 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Volcán Cerro Negro flujo de lava (2009)
Figure 15 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Volcán Cerro Negro flujos piroclásticos (2009)
Figure 13 in: Sistema Nacional de Prevención y Atención de Desastres (SINAPRED). (2009). Amenazas y Riesgos Naturales de Nicaragua. Compendio de Mapas. Catálogo de amenazas y riesgos para desastres asociados a fenómenos de la naturaleza. 190 p.

Mapa de Vulnerabilidades y Peligro ante Volcanes ([?])
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Cerro Negro (Chiles-Cerro Negro), Colombia-Ecuador [VNUM = 351110]

Mapa de Amenaza Volcánica del Volcán Cerro Negro, Segunda Versión (2014) (2014)
Servicio Geológico Colombiano (SGC). (2014). Mapa de Amenaza V olcánica del Volcán Cerro Negro, Segunda Versión. escala 1:50,000.

Mapa de Amenaza Potencial del Volcán Cerro Negro (2007)
Instituto Colombiano de Geología y Minería (INGEOMINAS). (2007). Atlas de Amenaza Volcánica Versión 2007. Mapa de Amenaza Potencial del Volcán Cerro Negro. escala 1:150,000.

Amenaza Cerro Negro ([?])
Servicio Geológico Colombiano (SGC). Amenaza Cerro-Negro.

El Negrillar (Negros de Aras), Chile [VNUM = 355106]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

La Negrillar, Chile [VNUM = 355108]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Nakanoshima, Japan [VNUM = 282040]

Nakanoshima disaster prevention information map (1996)
Figure 5-4-2 (pg. 5-4-5) in: Kagoshima Prefecture. (1996). Kagoshima Prefecture regional plan for disaster prevention.

Nakanoshima volcanic disaster area prediction map (1996)
Figure 5-4-6 (pg. 5-4-3) in: Kagoshima Prefecture. (1996). Kagoshima Prefecture regional plan for disaster prevention.

Nasudake, Japan [VNUM = 283150]

Nasudake Volcanic Alert Levels (2019)
Japan Meteorological Agency. (2019). Nasudake Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Nasudake Volcano Disaster Prevention Map (for climbers) (2015)
Nasudake Volcano Disaster Prevention Association. (2015). Nasudake Volcano Disaster Prevention Map (for climbers).

Debris flow dangerous area prediction map (2014)
Page 8 in: Nasudake Volcano Disaster Prevention Council. (2014). Nasudake Volcano Disaster Prevention Handbook.

Magma eruption hazard map (2014)
Page 7 in: Nasudake Volcano Disaster Prevention Council. (2014). Nasudake Volcano Disaster Prevention Handbook.

Nasudake volcanic alert level and regulation range (2014)
Page 11 in: Nasudake Volcano Disaster Prevention Council. (2014). Nasudake Volcano Disaster Prevention Handbook.

Steam eruption risk area prediction map (ash fall, volcanic blocks only) (2014)
Page 6 in: Nasudake Volcano Disaster Prevention Council. (2014). Nasudake Volcano Disaster Prevention Handbook.

Debris flow dangerous area prediction map (2010)
Page 8 in: Nasudake Volcano Disaster Prevention Council. (2010). Volcanic disaster prevention handbook of Mt. Nasudake.

Magma eruption hazard map (2010)
Page 7 in: Nasudake Volcano Disaster Prevention Council. (2010). Volcanic disaster prevention handbook of Mt. Nasudake.

Nasudake volcanic alert level and regulation range (2010)
Page 11 in: Nasudake Volcano Disaster Prevention Council. (2010). Volcanic disaster prevention handbook of Mt. Nasudake.

Nasudake Volcano Disaster Prevention Map (revised version) (2010)
Nasudake Volcano Disaster Prevention Association. (2010). Nasudake Volcano Disaster Prevention Map (revised version).

Steam eruption risk area prediction map (ash fall, volcanic blocks only) (2010)
Page 6 in: Nasudake Volcano Disaster Prevention Council. (2010). Volcanic disaster prevention handbook of Mt. Nasudake.

Mt. Nasudake Volcano Hazard-zonation Map (2003)
Nasudake Volcano Disaster Prevention Committee. (2003). Mt. Nasudake Volcano Hazard-Zonation Map. International Union of Geodesy and Geophysics (IUGG) General Assembly, Sapporo, Japan.

Nejapa-Miraflores, Nicaragua [VNUM = 344092]

This statistical model of spatial density for volcanic vent locations (white circles) in the Nejapa volcano alignment on the western side of the Managua graben (Nicaragua) is superimposed on a shaded-relief digital elevation model (DEM) (2019)
Figure 1 in: Connor, C. B., Connor, L. J., Germa, A., Richardson, J. A., Bebbington, M. S., Gallant, E., & Saballos, A. (2019). How to use kernel density estimation as a diagnostic and forecasting tool for distributed volcanic vents. Statistics in Volcanology, 4 (3). p. 1-25. http://dx.doi.org/10.5038/2163-338X.4.3

Mapa de Vulnerabilidades y Peligro ante Volcanes ([?])
Instituto Nicaraguense de Estudios Territoriales (INETER). Mapa de Vulnerabilidades y Peligro ante Volcanes. https://gestionderiesgo.ineter.gob.ni/IDE-VulnerabilidadVolcanica/index.html

Nemo Peak, Russia [VNUM = 290320]

Scheme of volcano-geographical zoning in the Kuril Islands (1962)
Figure 3 in: Markhinin, E. K., Sirin, A. N., Timerbayeva, K. M., & Tokarev, P. I. (1962). Experience of volcanic-geographic zoning of Kamchatka and Kuril Islands. Bulletin of the Volcanological Station, Petropavlousk, Kamchatskiy, USSR, 32, 52-70.

Nevis Peak, Saint Kitts and Nevis [VNUM = 360040]

Integrated volcanic hazard zones for an effusive dome building eruption from Nevis Peak (2005)
Page 176 in: Simpson, K. (2005). Nevis. In: Lindsay, J.M., Shepherd, J.B., Robertson, R.E.A., & Ali, S. (Eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, W.I., p. 170-178.

Volcanic hazard map for an effusive dome building eruption from Nevis Peak (2005)
Page 175 in: Simpson, K. (2005). Nevis. In: Lindsay, J.M., Shepherd, J.B., Robertson, R.E.A., & Ali, S. (Eds) Volcanic hazard atlas of the Lesser Antilles. Seismic Research Unit, The University of the West Indies, Trinidad and Tobago, W.I., p. 170-178.

Newberry, United States [VNUM = 322110]

Tribal Lands and Volcano Hazards in the Pacific Northwest (2021)
Gardner, C.A. and Bard, J.A. (2021). How would a volcanic eruption affect your Tribe? U.S. Geological Survey General Information Product 209, https://doi.org/10.3133/gip209.

Simplified volcano hazards map of Newberry Volcano, Oregon (2014)
Sherrod, D.R., Mastin, L.G., Scott, W.E., Schilling, S.P., Driedger, C.L., Iverson, R.M., Ramsey, D.W., & Faust, L.M. (2014). Simplified volcano hazards map of Newberry Volcano, Oregon. U.S. Geological Survey. Newberry Volcano, OR simplified hazards map. https://www.usgs.gov/media/images/newberry-volcano-or-simplified-hazards-map (Modified from: U.S. Geological Survey, Open-File Report 97-513)

Map showing one-year probability of accumulation of 1 centimeter (0.4 inch) or more of tephra from eruptions of volcanoes in the Cascade Range. (2013)
Nathensen, M. (2013). Map showing one-year probability of accumulation of 1 centimeter (0.4 inch) or more of tephra from eruptions of volcanoes in the Cascade Range. U.S. Geological Survey. Mount Bachelor Hazards. https://www.usgs.gov/volcanoes/mount-bachelor/hazards

Map showing annual probability of 1 centimeter or more of tephra accumulation from any major Cascade volcano (2012)
Figure 15 in: Clynne, M. A., Robinson, J. E., Nathenson, M. & Muffler, L. P. (2012). Volcano hazards assessment for the Lassen region, northern California. U.S. Geological Survey, Scientific Investigations Report 2012-5176-A, 47 p., 1 plate. https://doi.org/10.3133/sir20125176A

Oregon HazVu: Statewise Geohazards Viewer (2012)
Oregon Department of Geology and Moneral Industries (DOGAMI). (2012). Oregon HazVu: Statewide Geohazards Viewer.

Preliminary probabilistic tephra-hazard map for Pacific Northwest (2011)
Figure 2 in: Hoblitt, R.P., & Scott, W.E. (2011). Estimate of tephra accumulation probabilities for the U.S. Department of Energy's Hanford Site, Washington. U.S. Geological Survey, Open-File Report 2011-1064, 15 p. https://doi.org/10.3133/ofr20111064

Map showing annual probability of 1 cm or more of tephra accumulation in Washington, Oregon, and northern California from eruptions throughout the Cascade Range. (1997)
Figure 4 in: Sherrod, D.R., Mastin, L.G., Scott, W.E. & Schilling, S.P. (1997). Volcano hazards at Newberry Volcano, Oregon. U.S. Geological Survey, Open-File Report 97-513, 14 p. https://doi.org/10.3133/ofr97513

Volcano hazards at Newberry volcano, Oregon (1997)
Plate 1 in: Sherrod, D.R., Mastin, L.G., Scott, W.E. & Schilling, S.P. (1997). Volcano hazards at Newberry Volcano, Oregon. U.S. Geological Survey, Open-File Report 97-513, 14 p. https://doi.org/10.3133/ofr97513

Annual probability of 1 cm (about 0.4 inches) or more of tephra accumulation from any major Cascade volcano (1995)
Figure 5b in: Gardner, C.A., Scott, K.M., Miller, C.D., Myers, B., Hildreth, W., & Pringle, P.T. (1995). Potential volcanic hazards from future activity of Mount Baker, Washington. U.S. Geological Survey, Open-File Report 95-498, 16 p., 1 plate, scale 1:100,000. https://doi.org/10.3133/ofr95498

Annual probability of accumulation of ten or more centimeters (four or more inches) of tephra in Washington and Oregon from eruptions throughout the Cascade Range. (1995)
Figure 3 in: Wolfe, E.W. & Pierson, T.C. (1995). Volcanic-Hazard Zonation for Mount St. Helens, Washington, 1995. U.S. Geological Survey, Open-File Report 95-497, 12 p., 1 plate. https://doi.org/10.3133/ofr95497

Contour map of the estimated annual probability of the accumulation of 1 cm or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 4 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Contour map of the estimated annual probability of the accumulation of 1 m or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 2 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Contour map of the estimated annual probability of the accumulation of 10 cm or more of tephra in the northwestern United States at eruptions at 13 major volcanic centers in the Cascades Range (1987)
Plate 3 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Volcanic-hazard zones in the Cascades Range (1987)
Plate 1 in: Hoblitt, R. P., Miller, C. D., & Scott, W. E. (1987). Volcanic hazards with regard to siting nuclear-power plants in the Pacific Northwest. U.S. Geological Survey, Open-File Report 87-297. https://doi.org/10.3133/ofr87297

Preliminary Overview Map of Volcanic Hazards in the 48 Coterminous United States (1978)
Mullineaux, D.R. (1978). Preliminary overview map of volcanic hazards in the 48 conterminous United States. U.S. Geological Survey, Miscellaneous Field Studies Map 786. https://doi.org/10.3133/mf786

Niigata-Yakeyama, Japan [VNUM = 283090]

Niigata-Yakeyama Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Niigata-Yakeyama Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Hazard Map for Volcanic Disaster Prevention in Niigata Yakekama (2004)
Niigata Prefecture & Itoigawa City. (2004). Hazard Map for Volcanic Disaster Prevention in Niigata Yakayama.

Niigata Yakeyama Volcano Disaster Prevention Map (2004)
Niigata Prefecture & Itoigawa City. (2004). Niigata Yakeyama Volcano Disaster Prevention Map.

Niijima, Japan [VNUM = 284020]

Niijima Volcanic Alert Levels (2019)
Japan Meteorological Agency. (2019). Niijima Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Nikko-Shiranesan, Japan [VNUM = 283140]

Nikko-Shiranesan Volcanic Disaster Prevention Map (2019)
Nikko City, Numata City, & Katashina Village. (2019). Nikko-Shiranesan Volcanic Disaster Prevention Map

Nikko-Shiranesan Volcanic Alert Levels (2016)
Japan Meteorological Agency. (2016). Nikko-Shiranesan Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Ninahuilca (Atacazo), Ecuador [VNUM = 352021]

Mapa de los Peligros Volcánicos Potenciales Asociados con el Volcán Ninahuilca (1992)
Hall, M.L. & Maruri, W.R. (1992). Mapa de los Peligros Volcánicos Potenciales Asociados con el Volcán Ninahuilca. Instituto Geofisico de la Escuela Politecnica Nacional (IG-EPN), mapa escala 1:50.000. Quito.

Niuafo'ou, Tonga [VNUM = 243110]

Hazard zones for lava flows (2016)
Figure 11 in: Taylor, P.W. (2016). Niuafo’ou, Tonga: Volcanic Hazards and the Risk From Future Activity. In: Taylor, P.W. (Ed.) Volcanic Hazards and Emergency Management in the Southwest Pacific, SPC Technical Bulletin, SPC00017, p. 132-150

Hazard zones for tephra (2016)
Figure 13 in: Taylor, P.W. (2016). Niuafo’ou, Tonga: Volcanic Hazards and the Risk From Future Activity. In: Taylor, P.W. (Ed.) Volcanic Hazards and Emergency Management in the Southwest Pacific, SPC Technical Bulletin, SPC00017, p. 132-150

Norikuradake, Japan [VNUM = 283060]

Norikuradake Volcanic Alert Levels (2020)
Japan Meteorological Agency. (2020). Norikuradake Volcanic Alert Levels. Volcano Monitoring and Warning Center, Volcano Division, Earthquake and Volcano Department.

Norikuradake volcanic disaster hazard map (2020)
Volcano Disaster Management Councils of Norikuradake. (2020). Norikura volcano disaster prevention evacuation plan.

Norikuradake volcanic disaster prevention map (mobile version for climbers) (2019)
Gifu Prefecture Norikuradake Volcano Disaster Prevention Council. (2019). Norikuradake volcanic disaster prevention map (mobile version for climbers).

Novarupta, United States [VNUM = 312180]

Preliminary Volcano-Hazard Assessment for the Katmai Volcanic Cluster (2001)
Plate 1 in: Fierstein, J. & Hildreth, W. (2001). Preliminary volcano-hazard assessment for the Katmai Volcanic Cluster, Alaska. U.S. Geological Survey Open-File Report 00-489, 50 p., 1 plate. https://doi.org/10.3133/ofr00489

Nyamulagira, DR Congo [VNUM = 223020]

Carte de Risque Volcanique (2002)
Figure 1 in: Tedesco, D. (2003). 1995 Nyiragongo and Nyamulagira activity in the Virunga National Park: A volcanic crisis. Acta vulcanologica, 14(1-2), 149-155.

Nyiragongo, DR Congo [VNUM = 223030]

Lava flow hazard map for Nyiragongo (2009)
Figure 10 in: Favalli, M., Chirico, G. D., Papale, P., Pareschi, M. T., & Boschi, E. (2009). Lava flow hazard at Nyiragongo volcano, DRC. Bulletin of volcanology, 71(4), p. 363-374. https://doi.org/10.1007/s00445-008-0233-y

Carte de Risque Volcanique (2002)
Figure 1 in: Tedesco, D. (2003). 1995 Nyiragongo and Nyamulagira activity in the Virunga National Park: A volcanic crisis. Acta vulcanologica, 14(1-2), 149-155.

Sierra Nevada, Chile-Argentina [VNUM = 355123]

Integrated quantitative volcanic hazard map, constructed by adding each probability map (Figures 6A–E), weighted evenly (2022)
Figure 7 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Probabilistic volcanic hazard maps for the Central Volcanic Zone of Chile and Argentina (∼22.5–28°S), obtained after empirical, semi-empirical or analytical modeling (2022)
Figure 6 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability analysis considering: (A) volcanic events, and (B) volcanic events (80%) and structural data (20%) (2022)
Figure 11 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatial probability maps of volcanic activity for our study area (2022)
Figure 3 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439

Spatio-temporal probability maps of future volcanic activity for our study area at different forecasting time intervals (2022)
Figure 4 in: Bertin, D., Lindsay, J.M., Cronin, S.J., de Silva, S.L., Connor, C.B., Caffe, P.J., Grosse, P., Báez, W., Bustos, E., & Constantinescu, R. (2022). Probabilistic Volcanic Hazard Assessment of the 22.5–28° S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.875439